
5. Trees

© 2008, University of Colombo School of Computing 1

Part -1



5.1. Trees, Binary trees and Binary 

Search trees
• What Is a Tree?

– A tree consists of nodes connected by edges.

© 2008, University of Colombo School of Computing 2

– In the above picture of the tree, the nodes are represented as circles, 
and the edges as lines connecting the circles.

– Trees have been studied extensively as abstract mathematical entities, 
so there's a large amount of theoretical knowledge about them. 

– A tree is actually an instance of a more general category called a graph.



5.1. Trees, Binary trees and Binary 

Search trees contd…

• What Is a Tree? contd…

– In computer programs, nodes often represent 

such entities as people, car parts, airline 

reservations, and etc; in other words, the 

© 2008, University of Colombo School of Computing 3

reservations, and etc; in other words, the 

typical items we store in any kind of data 

structure.

– The lines (edges) between the nodes 

represent the way the nodes are related.



5.1. Trees, Binary trees and Binary 

Search trees contd…

• There are different kinds of trees

– Binary Tree : each node in a binary tree has a 

maximum of two children.

– Multiway trees : more general trees, in which 

© 2008, University of Colombo School of Computing 4

– Multiway trees : more general trees, in which 

nodes can have more than two children, are 

called



5.1. Trees, Binary trees and Binary 

Search trees contd…

• Why Use Binary Trees?
– Why might you want to use a tree? 

– Usually, because it combines the advantages 
of two other structures: 

© 2008, University of Colombo School of Computing 5

• an ordered array and 

• a linked list.

– You can search a tree quickly, as you can an 
ordered array, and you can also insert and 
delete items quickly, as you can with a linked 
list.



5.2. Implementation of Binary trees

• The Node Class

– First, we need a class of node objects. 

– These objects contain the data representing 

the objects being stored (employees in an 

© 2008, University of Colombo School of Computing 6

the objects being stored (employees in an 

employee database, for example) and also 

references to each of the node's two children. 

Here's how that looks:



5.2. Implementation of Binary trees 

contd…
class Node

{
int iData; // data used as key value

float fData; // other data

node leftChild; // this node's left child

© 2008, University of Colombo School of Computing 7

node rightChild; // this node's right child

public void displayNode()

{

// method body

}

}



5.2. Implementation of Binary trees 

contd…
• There are other approaches to designing class Node. Instead of 

placing the data items directly into the node, you could use a 
reference to an object representing the data item:

class Node

{

person p1; // reference to person 

© 2008, University of Colombo School of Computing 8

person p1; // reference to person 

object

node leftChild; // this node's left child

node rightChild; // this node's right 

child

}

class person

{

int iData;

float fData;

}



5.2. Implementation of Binary trees 

contd…

• The Tree Class

– We'll also need a class from which to instantiate the 

tree itself; the object that holds all the nodes. 

– We'll call this class Tree. It has only one field: a Node 

variable that holds the root. 

© 2008, University of Colombo School of Computing 9

variable that holds the root. 

– It doesn't need fields for the other nodes because 

they are all accessed from the root.

– The Tree class has a number of methods: some for 

finding, inserting, and deleting nodes, several for 

different kinds of traverses, and one to display the 

tree.



5.2. Implementation of Binary trees 

contd…
• Here's a skeleton version:

class Tree

{

private Node root; // the only data field in Tree

public void find(int key)

{

© 2008, University of Colombo School of Computing 10

{

}

public void insert(int id, double dd)

{

}

public void delete(int id)

{

}

// various other methods

} // end class Tree



5.2. Implementation of Binary trees 

contd…

• The TreeApp Class

– Finally, we need a way to perform operations 

on the tree. 

– Here's how you might write a class with a 

© 2008, University of Colombo School of Computing 11

– Here's how you might write a class with a 

main() routine to create a tree, insert three 

nodes into it, and then search for one of them. 

– We'll call this class TreeApp:



5.2. Implementation of Binary trees 

contd…
class TreeApp

{
public static void main(String[] args)
{

Tree theTree = new Tree; // make a tree

theTree.insert(50, 1.5); // insert 3 nodes

© 2008, University of Colombo School of Computing 12

theTree.insert(50, 1.5); // insert 3 nodes

theTree.insert(25, 1.7);

theTree.insert(75, 1.9);

node found = theTree.find(25); // find node with key 25

if(found != null)

System.out.println("Found the node with key 25");

else

System.out.println("Could not find node with key 25");

} // end main()

} // end class TreeApp



5.3. Searching a Binary tree

• Finding a Node
– Finding a node with a specific key is the simplest of the major 

tree operations, so let's start with that.

– Remember that the nodes in a binary search tree correspond to 
objects containing information. 

– They could be person objects, with an employee number as the 

© 2008, University of Colombo School of Computing 13

– They could be person objects, with an employee number as the 
key and also perhaps name, address, telephone number, salary, 
and other fields. 

– Or they could represent car parts, with a part number as the key 
value and fields for quantity on hand, price, and so on. 

– However, the only characteristics of each node that we can see 
in the Workshop applet are a number and a color. A node is 
created with these two characteristics and keeps them 
throughout its life.



5.3. Searching a Binary tree 

contd…
• Java Code for Finding a Node

Here's the code for the find() routine, which is a method of the Tree class:

public Node find(int key) // find node with 

given key

{ // (assumes non-empty tree)

Node current = root; // start at root

while(current.iData != key) // while no 

© 2008, University of Colombo School of Computing 14

while(current.iData != key) // while no 

match,

{

if(key < current.iData) // go left?

current = current.leftChild;

else

current = current.rightChild; // or go right?

if(current == null) // if no child,

return null; // didn't find it

}

return current; // found it

}



5.3. Searching a Binary tree 

contd…
• This routine uses a variable current to hold the node it is 

currently examining. 

• The argument key is the value to be found. The routine 
starts at the root. (It has to; this is the only node it can 
access directly.) That is, it sets current to the root.

• Then, in the while loop, it compares the value to be 

© 2008, University of Colombo School of Computing 15

• Then, in the while loop, it compares the value to be 
found, key, with the value of the iData field (the key field) 
in the current node. If key is less than this field, then 
current is set to the node's left child.

• If key is greater than (or equal) to the node's iData field, 
then current is set to the node's right child.



5.4. Ways of traversing a tree

• Tree-traversal refers to the process of 
visiting each node in a tree data structure, 
exactly once, in a systematic way. Such 
traversals are classified by the order in 

© 2008, University of Colombo School of Computing 16

traversals are classified by the order in 
which the nodes are visited. 



5.4. Ways of traversing a tree 

contd…
• Traversal methods

Compared to linear data structures like linked lists and 
one dimensional arrays, which have only one logical 
means of traversal, tree structures can be traversed in 
many different ways. Starting at the root of a binary tree, 
there are three main steps that can be performed and 

© 2008, University of Colombo School of Computing 17

there are three main steps that can be performed and 
the order in which they are performed define the 
traversal type. These steps (in no particular order) are: 
performing an action on the current node (referred to as 
"visiting" the node), traversing to the left child node, and 
traversing to the right child node. 



5.4. Ways of traversing a tree 

contd…
• To traverse a non-empty binary tree in preorder, perform the following 

operations recursively at each node, starting with the root node:
1. Visit the node. 

2. Traverse the left subtree. 

3. Traverse the right subtree. (This is also called Depth-first traversal.)

• To traverse a non-empty binary tree in inorder, perform the following 
operations recursively at each node, starting with the root node:

1. Traverse the left subtree. 

© 2008, University of Colombo School of Computing 18

1. Traverse the left subtree. 

2. Visit the node. 

3. Traverse the right subtree. 

• To traverse a non-empty binary tree in postorder, perform the following 
operations recursively at each node, starting with the root node:

1. Traverse the left subtree. 

2. Traverse the right subtree. 

3. Visit the node. 

• Finally, trees can also be traversed in level-order, where we visit every node 
on a level before going to a lower level. This is also called Breadth-first 
traversal.



5.4. Ways of traversing a tree 

contd…
• Example

In this binary search tree, 

© 2008, University of Colombo School of Computing 19

In this binary search tree, 

• Preorder traversal sequence: F, B, A, D, C, E, G, I, H 

• Inorder traversal sequence: A, B, C, D, E, F, G, H, I 
– Note that the inorder traversal of this binary search tree yields an 

ordered list 

• Postorder traversal sequence: A, C, E, D, B, H, I, G, F 

• Level-order traversal sequence: F, B, G, A, D, I, C, E, H 



5.4.1. Breadth-first search

• breadth-first search (BFS) is a graph 
search algorithm that begins at the root 
node and explores all the neighboring 
nodes. Then for each of those nearest 

© 2008, University of Colombo School of Computing 20

nodes. Then for each of those nearest 
nodes, it explores their unexplored 
neighbor nodes, and so on, until it finds 
the goal. 



5.4.1. Breadth-first search

• How it works
– Breadth-first search (BFS) is an uninformed search 

method that aims to expand and examine all nodes of 
a graph systematically in search of a solution. In other 
words, it exhaustively searches the entire graph 
without considering the goal until it finds it. It does not 

© 2008, University of Colombo School of Computing 21

without considering the goal until it finds it. It does not 
use a heuristic.

– From the standpoint of the algorithm, all child nodes 
obtained by expanding a node are added to a FIFO 
queue. In typical implementations, nodes that have 
not yet been examined for their neighbors are placed 
in some container (such as a queue or linked list) 
called "open" and then once examined are placed in 
the container "closed".



5.4.1. Breadth-first search

• How it works

© 2008, University of Colombo School of Computing 22



5.4.1. Breadth-first search

• Applications of BFS

– Breadth-first search can be used to solve many 

problems in graph theory, for example:

– Finding all connected components in a graph. 

– Finding all nodes within one connected component 

© 2008, University of Colombo School of Computing 23

– Finding all nodes within one connected component 

– Copying Collection, Cheney's algorithm 

– Finding the shortest path between two nodes u and v

(in an unweighted graph) 

– Testing a graph for bipartiteness 

– (Reverse) Cuthill–McKee mesh numbering 



5.4.2. Depth-first search

• Depth-first search (DFS) is an algorithm for traversing 
or searching a tree, tree structure, or graph. One starts 
at the root (selecting some node as the root in the graph 
case) and explores as far as possible along each branch 
before backtracking. 

• Formally, DFS is an uninformed search that progresses 

© 2008, University of Colombo School of Computing 24

• Formally, DFS is an uninformed search that progresses 
by expanding the first child node of the search tree that 
appears and thus going deeper and deeper until a goal 
node is found, or until it hits a node that has no children. 
Then the search backtracks, returning to the most recent 
node it hadn't finished exploring. In a non-recursive 
implementation, all freshly expanded nodes are added to 
a LIFO stack for exploration. 



5.4.2. Depth-first search

• How it works

© 2008, University of Colombo School of Computing 25

See next slide:



5.4.2. Depth-first search

• a depth-first search starting at A, assuming that the left edges in the shown graph are 
chosen before right edges, and assuming the search remembers previously-visited 
nodes and will not repeat them (since this is a small graph), will visit the nodes in the 
following order: A, B, D, F, E, C, G.

• Performing the same search without remembering previously visited nodes results in 
visiting nodes in the order A, B, D, F, E, A, B, D, F, E, etc. forever, caught in the A, B, 
D, F, E cycle and never reaching C or G.

• Iterative deepening prevents this loop and will reach the following nodes on the 
following depths, assuming it proceeds left-to-right as above:

© 2008, University of Colombo School of Computing 26

following depths, assuming it proceeds left-to-right as above:
– 0: A 
– 1: A (repeated), B, C, E 

• (Note that iterative deepening has now seen C, when a conventional depth-first 
search did not.)

– 2: A, B, D, F, C, G, E, F 

• (Note that it still sees C, but that it came later. Also note that it sees E via a different 
path, and loops back to F twice.)

– 3: A, B, D, F, E, C, G, E, F, B 

• For this graph, as more depth is added, the two cycles "ABFE" and "AEFB" will 
simply get longer before the algorithm gives up and tries another branch.



5.4.3. Stackless Depth-First 
Traversal

• Threaded trees allow you traverse the tree 
by following pointers stored within the tree

• Each node would store pointers to its 
predecessor and successor

© 2008, University of Colombo School of Computing 27

predecessor and successor

• This would create a lot of overhead with 
the additional two pointers for a total of 4 
pointers per node



5.5. Insertion and deletion

• Inserting a Node

– To insert a node we must first find the place to insert 

it. This is much the same process as trying to find a 

node that turns out not to exist, as described in the 

section on Find. 

© 2008, University of Colombo School of Computing 28

section on Find. 

– We follow the path from the root to the appropriate 

node, which will be the parent of the new node. 

– Once this parent is found, the new node is connected 

as its left or right child, depending on whether the new 

node's key is less than or greater than that of the 

parent.



5.5. Insertion and deletion
contd…

• Java Code for Inserting a Node
– The insert() function starts by creating the new node, 

using the data supplied as arguments.

– Next, insert() must determine where to insert the new 
node. This is done using roughly the same code as 

© 2008, University of Colombo School of Computing 29

node. This is done using roughly the same code as 
finding a node, described in the section on find(). The 
difference is that when you are simply trying to find a 
node and you encounter a null (nonexistent) node, 
you know the node you are looking for doesn't exist 
so you return immediately. When you're trying to 
insert a node you insert it (creating it first, if 
necessary) before returning.



5.5. Insertion and deletion
contd…

• The value to be searched for is the data item 
passed in the argument id. 

• The while loop uses true as its condition 
because it doesn't care if it encounters a node 
with the same value as id; it treats another node 

© 2008, University of Colombo School of Computing 30

with the same value as id; it treats another node 
with the same key value as if it were simply 
greater than the key value. (We'll return to the 
subject of duplicate nodes later in this chapter.)



5.5. Insertion and deletion
contd…

• A place to insert a new node will always 
be found (unless you run out of memory); 
when it is, and the new node is attached, 
the while loop exits with a return 

© 2008, University of Colombo School of Computing 31

the while loop exits with a return 
statement.

• Here's the code for the insert() function:



5.5. Insertion and deletion
contd…

public void insert(int id, double dd){

Node newNode = new Node(); // make new node

newNode.iData = id; // insert data

newNode.dData = dd;

if(root==null) // no node in root

root = newNode;

© 2008, University of Colombo School of Computing 32

root = newNode;

else // root occupied {

Node current = root; // start at root

Node parent;

while(true) // (exits internally) 

{

parent = current;

if(id < current.iData) // go left?

{



5.5. Insertion and deletion
contd…

current = current.leftChild;

if(current == null) // if end of the line,

{ // insert on left

parent.leftChild = newNode;

return;

}

} // end if go left

else // or go right?

{

© 2008, University of Colombo School of Computing 33

{

current = current.rightChild;

if(current == null) // if end of the line

{ // insert on right

parent.rightChild = newNode;

return;

}

} // end else go right

} // end while

} // end else not root

} // end insert()



5.5. Insertion and deletion
contd…

• Deletion
– The algorithm to delete an arbitrary node from a

binary tree is deceptively complex, as there are many
special cases. The algorithm used for the delete
function splits it into two separate operations,
searching and deletion. Once the node which is to be

© 2008, University of Colombo School of Computing 34

searching and deletion. Once the node which is to be
deleted has been determined by the searching
algorithm, it can be deleted from the tree. The
algorithm must ensure that when the node is deleted
from the tree, the ordering of the binary tree is kept
intact.

– Special Cases that have to be considered: 



5.5. Insertion and deletion
contd…

• Deletion

1. The node to be deleted has no children.

In this case the node may simply be deleted 

© 2008, University of Colombo School of Computing 35

In this case the node may simply be deleted 

from the tree. 



5.5. Insertion and deletion
contd…

• Deletion contd…

2. The node has one child.

The child node is appended to its 

© 2008, University of Colombo School of Computing 36

The child node is appended to its 

grandparent. (The parent of the node to be 

deleted.) 



5.5. Insertion and deletion
contd…

• Deletion contd…

3. The node to be deleted has two children.

This case is much more complex than the 
previous two, because the order of the binary 

© 2008, University of Colombo School of Computing 37

previous two, because the order of the binary 
tree must be kept intact. The algorithm must 
determine which node to use in place of the 
node to be deleted: 



5.5. Insertion and deletion
contd…

(i)Use the inorder successor of the node to 
be deleted.

© 2008, University of Colombo School of Computing 38



5.5. Insertion and deletion
contd…

(ii) Else if no right subtree exists replace the 
node to be deleted with the it's left child. 

© 2008, University of Colombo School of Computing 39



5.5. Insertion and deletion
contd…

• Deletion of the root node is also a special 
case. It can be accomplished using the 
methods described above, checking for 
the separate cases with no children, two 

© 2008, University of Colombo School of Computing 40

the separate cases with no children, two 
children, or one. 

• Complexity

– Average case is O(log2n). 

– Worst case is O(n). 


