
6. Graphs

© 2008, University of Colombo School of Computing 1

6.1. Definition of different Graphs

• A graph is the basic object of study in graph theory.
Informally speaking, a graph is a set of objects called
points, nodes, or vertices connected by links called lines
or edges. In a proper graph, which is by default
undirected, a line from point A to point B is considered to
be the same thing as a line from point B to point A. In a

© 2008, University of Colombo School of Computing 2

be the same thing as a line from point B to point A. In a
digraph, short for directed graph, the two directions are
counted as being distinct arcs or directed edges.
Typically, a graph is depicted in diagrammatic form as a
set of dots (for the points, vertices, or nodes), joined by
curves (for the lines or edges).

6.1. Definition of different Graphs

contd…

• A graph or undirected graph G is an
ordered pair G: = (V,E) that is subject to
the following conditions:

• V is a set, whose elements are called vertices or

© 2008, University of Colombo School of Computing 3

• V is a set, whose elements are called vertices or

nodes,

• E is a multiset of unordered pairs of vertices (not

necessarily distinct), called edges or lines.

(Note that this defines the most general type of graph. Some
authors call this a multigraph and reserve the term "graph" for

simple graphs.)

6.1. Definition of different Graphs

contd…
• The vertices belonging to an edge are called the ends, endpoints, or end

vertices of the edge.

• V (and hence E) are usually taken to be finite, and many of the well-known
results are not true (or are rather different) for infinite graphs because
many of the arguments fail in the infinite case. The order of a graph is | V |
(the number of vertices). A graph's size is | E | , the number of edges. The
degree of a vertex is the number of edges that connect to it, where an edge
that connects to the vertex at both ends (a loop) is counted twice.

© 2008, University of Colombo School of Computing 4

that connects to the vertex at both ends (a loop) is counted twice.

• The edges E induce a symmetric binary relation ~ on V which is called the
adjacency relation of G. Specifically, for each edge {u,v} the vertices u and
v are said to be adjacent to one another, which is denoted u ~ v.

• For an edge {u, v}, graph theorists usually use the somewhat shorter
notation uv.

6.1. Definition of different Graphs

contd…

• Types of graphs

– Directed graph

• A directed graph or digraph G is an ordered pair G: = (V,A)
with

– V is a set, whose elements are called vertices or nodes,

© 2008, University of Colombo School of Computing 5

– V is a set, whose elements are called vertices or nodes,

– A is a set of ordered pairs of vertices, called directed edges,

arcs, or arrows.

• An arc e = (x,y) is considered to be directed from x to y; y is
called the head and x is called the tail of the arc; y is said to
be a direct successor of x, and x is said to be a direct
predecessor of y. If a path leads from x to y, then y is said to
be a successor of x, and x is said to be a predecessor of y.
The arc (y,x) is called the arc (x,y) inverted.

6.1. Definition of different Graphs

contd…
– Directed graph contd..

• A directed graph G is called symmetric if, for every arc that
belongs to G, the corresponding inverted arc also belongs to G.
A symmetric loopless directed graph is equivalent to an
undirected graph with the pairs of inverted arcs replaced with
edges; thus the number of edges is equal to the number of arcs
halved.

© 2008, University of Colombo School of Computing 6

halved.
• A variation on this definition is the oriented graph, which is a

graph (or multigraph; see below) with an orientation or direction
assigned to each of its edges. A distinction between a directed
graph and an oriented simple graph is that if x and y are
vertices, a directed graph allows both (x,y) and (y,x) as edges,
while only one is permitted in an oriented graph. A more
fundamental difference is that, in a directed graph (or
multigraph), the directions are fixed, but in an oriented graph
(or multigraph), only the underlying graph is fixed, while the
orientation may vary.

6.1. Definition of different Graphs

contd…
• Types of graphs

– Undirected graph

A graph G = {V,E} in which every edge is undirected. This is the same as a
digraph (look above) where for an edge (v,u) there is an edge from v to u and u
to v.

– Finite graph
A finite graph is a graph G = <V,E> such that V(G) and E(G) are finite

© 2008, University of Colombo School of Computing 7

A finite graph is a graph G = <V,E> such that V(G) and E(G) are finite
sets.

– Simple graph
A simple graph is an undirected graph that has no self-loops and no
more than one edge between any two different vertices. In a simple
graph the edges of the graph form a set (rather than a multiset) and
each edge is a pair of distinct vertices. In a simple graph with p vertices

every vertex has a degree that is less than p.

6.1. Definition of different Graphs

contd…

• Types of graphs

– Regular graph

A regular graph is a graph where each vertex has the same number of

neighbors, i.e., every vertex has the same degree or valency. A regular

graph with vertices of degree k is called a k-regular graph or regular

© 2008, University of Colombo School of Computing 8

graph with vertices of degree k is called a k-regular graph or regular

graph of degree k.

– Weighted graph

A graph is a weighted graph if a number (weight) is assigned to
each edge. Such weights might represent, for example, costs,
lengths or capacities, etc. depending on the problem.

Weight of the graph is sum of the weights given to all edges.

6.1. Definition of different Graphs

contd…
• Types of graphs

– Mixed graph
A mixed graph G is a graph in which some edges may be
directed and some may be undirected. It is written as an ordered
triple G := (V, E, A) with V, E, and A defined as above. Directed
and undirected graphs are special cases.

© 2008, University of Colombo School of Computing 9

and undirected graphs are special cases.

– Complete graph
Complete graphs have the feature that each pair of vertices has an

edge connecting them.

– Loop
A loop is an edge (directed or undirected) which starts and ends on the same

vertex; these may be permitted or not permitted according to the application. In

this context, an edge with two different ends is called a link.

6.1. Definition of different Graphs

contd…

• Types of graphs

– Multi graph
The term "multigraph" is generally understood to mean that multiple

edges (and sometimes loops) are allowed. Where graphs are defined so

as to allow loops and multiple edges, a multigraph is often defined to

© 2008, University of Colombo School of Computing 10

as to allow loops and multiple edges, a multigraph is often defined to

mean a graph without loops,however, where graphs are defined so as

to disallow loops and multiple edges, the term is often defined to mean

a "graph" which can have both multiple edges and loops, although many

use the term "pseudograph" for this meaning.

– Half-edges, loose edges

In exceptional situations it is even necessary to have edges with

only one end, called half-edges, or no ends (loose edges).

6.2. Graph Representation

• Two common ways to represent graphs on a computer are as an adjacency
list or as an adjacency matrix.

– Adjacency list:
Vertices are labelled (or re-labelled) from 0 to |V(G)|-1.
Corresponding to each vertex is a list (either an array or linked
list) of its neighbours.

– Adjacency matrix:
Vertices are labelled (or re-labelled) with integers from 0 to

© 2008, University of Colombo School of Computing 11

Vertices are labelled (or re-labelled) with integers from 0 to
|V(G)|-1. A two-dimensional boolean array A with dimensions
|V(G)| x |V(G)| contains a 1 at A[i][j]

– if there is an edge from the vertex labelled i to the vertex
labelled j,and a 0 otherwise.

Both representations allow us to represent directed graphs, since
we can have an edge from vi to vj , but lack one from vi to vj . To
represent undirected graphs, we simply make sure that are
edges are listed twice: once from vi to vj , and once from vi to vj .

Breadth first search

• Given a graph G=(V,E) and a source
vertex s, BFS explores the edges of G
to “discover” (visit) each node of G

6.3. Graph Traversals contd…

© 2008, University of Colombo School of Computing 12

to “discover” (visit) each node of G
reachable from s.

• Idea - expand a frontier one step at a
time.

• Frontier is a FIFO queue (O(1) time to
update)

6.3. Graph Traversals contd…

• Computes the shortest distance (dist) from s
to any reachable node.

• Computes a breadth first tree (of parents)
with root s that contains all the reachable

Breadth first search

© 2008, University of Colombo School of Computing 13

with root s that contains all the reachable
vertices from s.

• To get O(|V|+|E|) we use an adjacency list
representation. If we used an adjacency
matrix it would be Ο(|V|2)

6.3. Graph Traversals contd…

• We use colors (white, gray and black) to
denote the state of the node during the
search.

• A node is white if it has not been reached

Coloring the nodes

© 2008, University of Colombo School of Computing 14

• A node is white if it has not been reached
(discovered).

• Discovered nodes are gray or black. Gray
nodes are at the frontier of the search.
Black nodes are fully explored nodes.

BFS - initialize

procedure BFS(G:graph; s:node; var
color:carray; dist:iarray; parent:parray);

for each vertex u do

color[u]:=white; dist[u]:=∞; ΘΘΘΘ(V)

6.3. Graph Traversals contd…

© 2008, University of Colombo School of Computing 15

color[u]:=white; dist[u]:=∞; ΘΘΘΘ(V)

parent[u]:=nil; end for

color[s]:=gray; dist[s]:=0;

init(Q); enqueue(Q, s);

BFS - main

while not (empty(Q)) do

u:=head(Q);

for each v in adj[u] do

if color[v]=white then O(E)

6.3. Graph Traversals contd…

© 2008, University of Colombo School of Computing 16

if color[v]=white then O(E)

color[v]:=gray; dist[v]:=dist[u]+1;

parent[v]:=u; enqueue(Q, v);

dequeue(Q); color[u]:=black;

end BFS

)(][deg|][| EOureeuADJ

VuVu

∑∑
∈∈

==

r s t u r s t u

∞ ∞ ∞

∞ ∞
∞

∞

0

s w r

1 0 ∞ ∞

∞ 1
∞ ∞

BFS example

6.3. Graph Traversals contd…

© 2008, University of Colombo School of Computing 17

0

1

1 0

1

v w x y v w x y

r s t u r s t u

v w x y v w x y

∞ ∞ ∞

1 2

2

∞

∞∞

r t x t x v

2

22

∞

∞

BFS example

2

1

1 2

1 2

r s t u r s t u

1 3

2
2 ∞

0.

x v u v u y

0 3

2
3

6.3. Graph Traversals contd…

© 2008, University of Colombo School of Computing 18

1

1 0 2

1 2

1 2

1

2

0 2 3

1 2

v w x y v w x y

r s t u r s t u

v w x y v w x y

2 ∞ 3

3

32

u y y

3

now y is removed from the Q and colored black

Analysis of BFS

• Initialization is Θ(|V|).

• Each node can be added to the queue at
most once (it needs to be white), and its
adjacency list is searched only once. At most

6.3. Graph Traversals contd…

© 2008, University of Colombo School of Computing 19

adjacency list is searched only once. At most
all adjacency lists are searched.

• If graph is undirected each edge is reached
twice, so loop repeated at most 2|E| times.

• If graph is directed each edge is reached
exactly once. So the loop repeated at most
|E| times.

• Worst case time O(|V|+|E|)

Depth First Search

• Goal - explore every vertex and edge of G

• We go “deeper” whenever possible.

• Directed or undirected graph G = (V, E).

Θ

6.3. Graph Traversals contd…

© 2008, University of Colombo School of Computing 20

• To get worst case time Θ(|V|+|E|) we use
an adjacency list representation. If we
used an adjacency matrix it would be

Θ(|V|2)

• Until there are no more undiscovered nodes.

– Picks an undiscovered node and starts a depth first

search from it.

– The search proceeds from the most recently

discovered node to discover new nodes.

Depth First Search

6.3. Graph Traversals contd…

© 2008, University of Colombo School of Computing 21

discovered node to discover new nodes.

– When the last discovered node v is fully explored,

backtracks to the node used to discover v. Eventually,

the start node is fully explored.

• In this version all nodes are discovered even if
the graph is directed, or undirected and not
connected

• The algorithm saves:
– A depth first forest of the edges used to

6.3. Graph Traversals contd…
Depth First Search

© 2008, University of Colombo School of Computing 22

– A depth first forest of the edges used to
discover new nodes.

– Timestamps for the first time a node u is
discovered d[u] and the time when the node is
fully explored f[u]

6.3. Graph Traversals contd…

procedure DFS(G:graph; var color:carray; d, f:iarray;

parent:parray);

for each vertex u do

color[u]:=white; parent[u]:=nil; ΘΘΘΘ(V)

end for

Depth First Search

© 2008, University of Colombo School of Computing 23

end for

time:=0;

for each vertex u do

if color[u]=white then

DFS-Visit(u); end if; end for

end DFS

DFS-Visit(u)
color[u]=:gray; time:=time+1; d[u]:=time

for each v in adj[u] do

if color[v]=white then

parent[v]:=u; DFS-Visit(v);

6.3. Graph Traversals contd…

© 2008, University of Colombo School of Computing 24

parent[v]:=u; DFS-Visit(v);

end if; end for;

color[u]:=black; time:=time+1; f[u]:=time;

end DFS-Visit

DFS example (1)
u v w

1/

u v w

1/ 2/

6.3. Graph Traversals contd…

© 2008, University of Colombo School of Computing 25

x y z x y z

u v w

1/

x y z

2/

3/

u v w

1/

x y z

2/

3/4/

B

DFS example (2)
u v w

4/5

1/ 2/

3/

B

u v w

4/5 3/6

1/ 2/

B

6.3. Graph Traversals contd…

© 2008, University of Colombo School of Computing 26

x y z

x y z

u v w

x y z

4/5 4/5

4/5 3/6

1/ 2/7

B

DFS example (3)
u v w u v w

F

4/5 3/6

1/8 2/7

B F

4/5

9

3/6

1/8 2/7

B C

6.3. Graph Traversals contd…

© 2008, University of Colombo School of Computing 27

x y z

u v w

x y z
x y z

u v w

x y z

4/5 3/6 4/5 3/6

F

4/5

9

3/6 10

1/8 2/7

B F

4/5

9

3/6 10/11

1/8 2/7

B C
C

DFS example (4)

F

9/121/8 2/7

B C

u v w

6.3. Graph Traversals contd…

© 2008, University of Colombo School of Computing 28

x y z

F

4/5 3/6 10/11

B C

Analysis
• DFS is Θ(|V|) (excluding the time taken by

the DFS-Visits).

• DFS-Visit is called once for each node v.
Its for loop is executed |adj(v)| times. The

6.3. Graph Traversals contd…

© 2008, University of Colombo School of Computing 29

Its for loop is executed |adj(v)| times. The
DFS-Visit calls for all the nodes take

Θ(|E|).

• Worst case time Θ(|V|+|E|)

6.4. Shortest Paths

• Example:

– In a flight route graph, the weight of
an edge represents the distance in
miles between the endpoint airports

© 2008, University of Colombo School of Computing 30

ORD
PVD

MIA
DFW

SFO

LAX

LGA

HNL

6.4 Shortest Paths contd…

• The weight of path p = < v0, v1,….vk> is
the sum of the weights of its constituent
edges.

© 2008, University of Colombo School of Computing 31

• Given a weighted graph and two vertices u and

v, we want to find a path of minimum total weight

between u and v.

– Length of a path is the sum of the weights of

its edges.

6.4 Shortest Paths contd…

Example: Shortest path between
Providence and Honolulu

• Applications

– Internet packet routing

– Flight reservations

© 2008, University of Colombo School of Computing 32

– Flight reservations

– Driving directions

ORD
PVD

MIA
DFW

SFO

LAX

LGA

HNL

6.4 Shortest Paths contd…

• We will focus on Single source shortest
paths problem: given a graph G = (V,E),
we want to find a shortest path from a
given source vertex s Є V to each vertex v
Є V.

© 2008, University of Colombo School of Computing 33

Є V.

Shortest Path Properties

Property 1: A sub path of a shortest path is itself a
shortest path.

Property 2: There is a tree of shortest paths from
a start vertex to all the other vertices.

6.4.1. Shortest Path Problem

Example:

Tree of shortest paths from Providence

ORD
PVD

© 2008, University of Colombo School of Computing 34

ORD
PVD

MIA
DFW

SFO

LAX

LGA

HNL

6.4.1. Shortest Path Problem

contd…

• The shortest path algorithms use the
technique of relaxation.

• For each vertex v Є V, an attribute d[v]

© 2008, University of Colombo School of Computing 35

• For each vertex v Є V, an attribute d[v]
is maintained which is an upper bound
on the weight of a shortest path from
source s to v.

• d[v] – shortest path estimate

6.4.2. Shortest Path Algorithms

• The shortest path estimates and
predecessors are initialized by the
following O(V) time procedure.

© 2008, University of Colombo School of Computing 36

INITIALIZE-SINGLE-SOURCE (G,s)
for each vertex v Є V[G]

do d[v] � ∞

π[v] � NIL

d[s] � 0

6.4.2. Shortest Path Algorithms

contd…

• Relaxing and edge (u,v) – consists of
testing whether the shortest path to v
found so far can be improved by going
through u. If so d[v] and π[v] values

© 2008, University of Colombo School of Computing 37

through u. If so d[v] and π[v] values
should be updated.

• A relaxation step may decrease the
value of the shortest path estimate d[v].

6.4.3. Relaxation

• Relaxation of an edge (u,v) with weight
w(u,v) = 2.

5 9 5 6
2 2u v u v

© 2008, University of Colombo School of Computing 38

5 9

5 7

5 6

5 6
2 2

d[v] > d[u] + w(u,v) d[v] ≤ d[u] + w(u,v)

d[v] is changed by relaxation d[v] is unchanged by

relaxation

Relax (u,v,w) Relax (u,v,w)

u uv v

6.4.3. Relaxation contd…

Relax (u,v,w)

if d[v] > d[u] + w(u,v)

then d[v] � d[u] + w(u,v)

π[v] u

© 2008, University of Colombo School of Computing 39

π[v] � u

6.5. Cycle Detection

• Cycle detection on a graph is a bit different
than on a tree due to the fact that a graph
node can have multiple parents. On a tree,
the algorithm for detecting a cycle is to do

© 2008, University of Colombo School of Computing 40

the algorithm for detecting a cycle is to do
a depth first search, marking nodes as
they are encountered. If a previously
marked node is seen again, then a cycle
exists. This won’t work on a graph.

6.5. Cycle Detection contd…

• The graph in figure will be falsely reported
to have a cycle, since node C will be seen
twice in a DFS starting at node A.

© 2008, University of Colombo School of Computing 41

6.5. Cycle Detection contd…

• The cycle detection algorithm for trees can easily be
modified to work for graphs. The key is that in a DFS of
an acyclic graph, a node whose descendants have all
been visited can be seen again without implying a cycle.
However, if a node is seen a second time before all of its
descendants have been visited, then there must be a

© 2008, University of Colombo School of Computing 42

descendants have been visited, then there must be a
cycle. Can you see why this is? Suppose there is a cycle
containing node A. Then this means that A must be
reachable from one of its descendants. So when the
DFS is visiting that descendant, it will see A again,
before it has finished visiting all of A’s descendants. So
there is a cycle.

6.5. Cycle Detection contd…

• In order to detect cycles, we use a
modified depth first search called a
colored DFS. All nodes are initially marked
white. When a node is encountered, it is

© 2008, University of Colombo School of Computing 43

white. When a node is encountered, it is
marked grey, and when its descendants
are completely visited, it is marked black.
If a grey node is ever encountered, then
there is a cycle.

Cycle detection algorithm.

boolean containsCycle(Graph g):
for each vertex v in g do:
v.mark = WHITE;
od;
for each vertex v in g do:
if v.mark == WHITE then:
if visit(g, v) then:
return TRUE;
fi;
fi;
od;
return FALSE;
boolean visit(Graph g, Vertex v):

© 2008, University of Colombo School of Computing 44

boolean visit(Graph g, Vertex v):
v.mark = GREY;
for each edge (v, u) in g do:
if u.mark == GREY then:
return TRUE;
else if u.mark == WHITE then:
if visit(g, u) then:
return TRUE;
fi;
fi;
od;
v.mark = BLACK;
return FALSE;

6.6. Spanning Tree

A spanning tree of a graph is a subgraph

that is a tree containing all the vertices.

© 2008, University of Colombo School of Computing 45

6.6.1. Minimum Spanning Tree

(MST)

The spanning tree among all spanning

trees with the lowest total edge weight.

© 2008, University of Colombo School of Computing 46

6.6.2. Applications of MST

Problem

• Computer networks

- How to connect a set of computers
using the minimum amount of wire.

© 2008, University of Colombo School of Computing 47

• Electronic circuits

6.6.3. Minimum Spanning Tree

(MST)

Find the MST.

© 2008, University of Colombo School of Computing 48

6.6.3.Solution

© 2008, University of Colombo School of Computing 49

6.6.4. Generic Algorithm for MST
Input : connected weighted graph, G

Output : MST, T, for graph G

Greedy strategy in the generic algorithm

- Grow the MST one edge at a time.

- Manage a set of edges A, that is prior to each

© 2008, University of Colombo School of Computing 50

- Manage a set of edges A, that is prior to each
iteration, A is a subset of some MST

• At each step determine an edge (u,v) that can be
added to A without violating this invariant.

• We call such an edge a safe edge for A, since it
can be safely added to A while maintaining the
invariant.

6.6.4. Generic Algorithm for MST

Generic-MST(G,w)

1. A � 0

2. while A does not form a spanning tree

© 2008, University of Colombo School of Computing 51

2. while A does not form a spanning tree

3. do find an edge (u,v) that is safe for
A

4. A � A U { (u,v)}

5. return A

• An Undirected Graph is a graph where
the edges have no directions.

• The edges in an undirected graph are
called Undirected Edges.

Undirected Graph

6.7. Connectivity of graphs

© 2008, University of Colombo School of Computing 52

called Undirected Edges.

V1

V3

V2

V4

{vi,vj} = {vj, vi}

1

2

3

G = (V, E)

• Example (Undirected Graph)

6.7. Connectivity of graphs

contd…

© 2008, University of Colombo School of Computing 53

2

4

5

V = {1, 2, 3, 4, 5}

E = {(1,2), (1,3), (1,4), (2,3),

(3,5), (4,5)}

6.7. Connectivity of graphs

contd…

• A Directed Graph or Digraph is a graph where
each edge has a direction.

• The edges in a digraph are called Arcs or
Directed Edges.

Directed Graphs

© 2008, University of Colombo School of Computing 54

Directed Edges.

{vi,vj} = {vj, vi}

V1

V3

V2

V4

• Example (Digraph)

1

4

6

2

G = (V, E)

6.7. Connectivity of graphs

contd…

© 2008, University of Colombo School of Computing 55

3 5

2
V = {1, 2, 3, 4, 5, 6}

E = {(1,4), (2,1), (2,3), (3,2), (4,3),

(4,5), (4,6), (5,3), (6,1), (6,5)}

(1, 4) = 1→4 where 1 is the tail

and 4 is the head

6.8. Topological Sort

• Graphs are sometimes used to represent
“before and after” relationships.
For example, you need to think through a
design for a program before you start
coding.

© 2008, University of Colombo School of Computing 56

coding.

• These two steps can be represented as
vertices, and the relationship between
them as a directed edge from the first to
the second.

6.8. Topological Sort contd…

• On such graphs, it is useful to determine

which steps must come before others. The

topological sort algorithm computes an

ordering on a graph such that if vertex is

earlier than vertex in the ordering, there is

β

© 2008, University of Colombo School of Computing 57

earlier than vertex in the ordering, there is

no path from to . In other words, you

cannot get from a vertex later in the ordering

to a vertex

• earlier in the ordering. Of course, topological

sort works only on directed acyclic graphs.

β α

6.8. Topological Sort contd…

• The simplest topological sort algorithm is
to repeatedly remove vertices with in-
degree of 0 from the graph. The edges
belonging to the vertex are also removed,

© 2008, University of Colombo School of Computing 58

belonging to the vertex are also removed,
reducing the in-degree of adjacent
vertices. This is done until the graph is
empty, or until no vertex without incoming
edges exists, in which case the sort fails.

6.9. Networks

• Networks can be used to represent the
transportation of some commodity through
a system of delivery channels.

• There are sources (x) and sinks (y).

© 2008, University of Colombo School of Computing 59

• There are sources (x) and sinks (y).

• The network is a directed graph, where
each arc a is associated with a capacity,
c(a).

6.9. Networks contd…

© 2008, University of Colombo School of Computing 60

6.9.1. Flow

• A flow in a network is a set of numbers associated

with each arc, f (a).

• This indicates how much of a channel’s capacity is

being used.

• 0 f (a) c(a).≤ ≤

© 2008, University of Colombo School of Computing 61

• 0 f (a) c(a).

• For a vertex v, the flow into and out of the vertex is

• denoted by f−(v) and f+(v) respectively.

• For intermediate vertices (not sources or sinks) the

flow in is the same as the flow out. This is called the

conservation condition.

≤ ≤

6.9.2. Resultant flow

• For some set of vertices S, the resultant flow out of S is
given by f+(S) − f−(S).

• We are often interested in the resultant flow out of the
source x. (Or the set of sources X if there is more than
one).

• In particular, we usually want to find a maximum flow, so

© 2008, University of Colombo School of Computing 62

• In particular, we usually want to find a maximum flow, so
that as much of the capacity is used as possible in
transporting out of the sources to the sinks.

• It is straightforward to extend a network with multiple
sources and sinks to one with just one source and sink in
order to analyse the maximum flow.

6.9.3. Cuts

• A cut is a division of the vertices into two sets S and , so
that the source is in S and the sink is in .

• The capacity of a cut is the sum of all the edges which
cross between S and .

• How many cuts are possible in a network with vertices?

s
s

s

© 2008, University of Colombo School of Computing 63

• How many cuts are possible in a network with vertices?

• What are the different cuts of the network on the board,
and what are their capacities?

6.9.4. Max-flow min-cut

• In all the examples we have seen, the minimum

capacity cut is the same as the maximum flow.

• Intuitively we can think of saturating the

bottlenecks.

© 2008, University of Colombo School of Computing 64

bottlenecks.

• To prove, we can show first that max flow min

cut (no augmenting paths).

• Then show max flow min cut (removing

edges changes capacity).

≤

≥

6.9.5. The Ford-Fulkerson

Algorithm

• An algorithm for finding the maximum flow in a

network.

1. Set the flow to zero for all arcs.

2. Calcuate the residual network Gf . While there is a

path p from x to y in G :

© 2008, University of Colombo School of Computing 65

path p from x to y in Gf :

• Find cf (p) = min{cf (u, v)|(u, v) p}

• For each edge in p, add cf (p) to the flow.

(Subtract cf (p) from the flow if the edge is a reverse arc in the

network).

– Repeat step 2 until there is no augmenting path.

∈

6.9.5. The Ford-Fulkerson

Algorithm contd…

© 2008, University of Colombo School of Computing 66

6.9.6. Other problems regarding

network flow

• Multi commodity flow: a number of sources
produce different products that are to be
transported to different sinks using the
same network.

© 2008, University of Colombo School of Computing 67

• Mimimum cost flow: each arc has an
associated cost, and we want to find the
cheapest mode of transportation.

• Circulation: there is a lower bound on the
flow as well as an upper bound.

