
1. Overview of Data 
Structures

© 2008, University of Colombo School of Computing 1

Structures



1.1. Introduction to data structures
• A data structure is an arrangement of data in a computer's 

memory or even disk storage. 

• An example of several common data structures are 
– Arrays
– Linked lists
– Queues
– Stacks
– Binary trees

© 2008, University of Colombo School of Computing 2

– Binary trees
– Hash tables

• Algorithms, on the other hand, are used to manipulate the 
data contained in these data structures as in searching and 
sorting. 

• Many algorithms apply directly to a specific data structures. 
When working with certain data structures you need to 
know how to insert new data, search for a specified item, 
and deleting a specific item. 



1.1. Characteristics of Data Structures

Data Structure Advantages Disadvantages

Array Quick inserts

Fast access if index 

known

Slow search

Slow deletes

Fixed size

Ordered Array Faster search than 

unsorted array

Slow inserts

Slow deletes

© 2008, University of Colombo School of Computing 3

unsorted array Slow deletes

Fixed size

Stack Last-in, first-out acces Slow access to other items

Linked List Q

u

i

Slow search L

i

n

Quick inserts

Quick deletes

Queue First-in, first-out access Slow access to other items



1.1. Characteristics of Data Structures cont…

Data Structure 
Advantages Disadvantages

Binary Tree Quick search

Quick inserts

Quick deletes

(If the tree remains balanced)

Deletion algorithm is complex

Red-Black Tree Quick search

Quick inserts

Complex to implement

© 2008, University of Colombo School of Computing 4

Quick inserts

Quick deletes

(Tree always remains 

balanced)

2-3-4 Tree Quick search

Quick inserts

Quick deletes

(Tree always remains 

balanced)

(Similar trees good for disk 

storage)

Complex to implement



1.1. Characteristics of Data Structures cont…

Data Structure Advantages Disadvantages

Hash Table Very fast access if key is 

known

Quick inserts

Slow deletes

Access slow if key is not known

Inefficient memory usage

Heap Quick inserts

Quick deletes

Slow access to other items

© 2008, University of Colombo School of Computing 5

Quick deletes

Access to largest item

Graph Best models real-world 

situations

Some algorithms are slow and very 

complex

NOTE: The data structures shown above (with the exception of the array) can be thought 

of as Abstract Data Types (ADTs).



1.1. Abstract Data Types

• An Abstract Data Type (ADT) is a way of looking at a
data structure: focusing on what it does.

• A stack or a queue is an example of an ADT.

• It is important to understand that both stacks and queues
can be implemented using an array.

• It is also possible to implement stacks and queues using

© 2008, University of Colombo School of Computing 6

• It is also possible to implement stacks and queues using
a linked list.

• This demonstrates the "abstract" nature of stacks and
queues: how they can be considered separately from
their implementation.

• To best describe the term Abstract Data Type, it is best
to break the term down into "data type" and then
"abstract".



1.1. Abstract Data Types cont…

• Data type

– Primitive data types refer to two things: a data item
with certain characteristics and the permissible
operations on that data.

• Eg: A short in Java, can contain any whole number value

from -32,768 to 32,767.

© 2008, University of Colombo School of Computing 7

from -32,768 to 32,767.

• It can also be used with the operators +, -, *, and /.

– The data type's permissible operations are an
inseparable part of its identity; understanding the type
means understanding what operations can be
performed on it.



1.1. Abstract Data Types cont…

• Data type cont..
– In Java, any class represents a data type, in the 

sense that a class is made up of data (fields) and 

permissible operations on that data (methods). 

– By extension, when a data storage structure like a 

© 2008, University of Colombo School of Computing 8

– By extension, when a data storage structure like a 

stack or queue is represented by a class, it too can be 

referred to as a data type. 

– A stack is different in many ways from an int, but they 

are both defined as a certain arrangement of data and 

a set of operations on that data



1.1. Abstract Data Types cont…

• Abstract

– In Java, an Abstract Data Type is a class considered 

without regard to its implementation. It can be thought 

of as a "description" of the data in the class and a list 

of operations that can be carried out on that data and 

© 2008, University of Colombo School of Computing 9

of operations that can be carried out on that data and 

instructions on how to use these operations. 

– What is excluded though, is the details of how the 

methods carry out their tasks.

– End user (or class user), should be told what methods 

to call, how to call them, and the results that should 

be expected, but not how they work. 



1.1. Abstract Data Types cont…

• Abstract cont…

– Can further extend the meaning of the ADT when 

applying it to data structures such as a stack and 

queue. In Java, as with any class, it means the data 

and the operations that can be performed on it. In this 

© 2008, University of Colombo School of Computing 10

and the operations that can be performed on it. In this 

context, although, even the fundamentals of how the 

data is stored should be invisible to the user. 

– Users not only should not know how the methods 

work, they should also not know what structures are 

being used to store the data. 



1.1. Abstract Data Types cont…

• The Interface

– The ADT specification is often called an 

interface. 

– It's what the user of the class actually sees. 

© 2008, University of Colombo School of Computing 11

– It's what the user of the class actually sees. 

– In Java, this would often be the public 

methods. Consider for example, the stack 

class - the public methods push() and pop() 

and similar methods from the interface would 

be published to the end user. 



1.2. Practical data storage structures

• Many of the structures and techniques 
considered here are about how to handle real-
world data storage. 

• By real-world data, we mean data that describes 
physical entities external to the computer. 

© 2008, University of Colombo School of Computing 12

physical entities external to the computer. 

Examples: A personnel record describes a actual human 
being, an inventory record describes an existing car part 
or grocery item, and a financial transaction record 
describes, say, an actual check written to pay the electric 
bill.



1.2. Practical data storage structures 
Cont…

• A non-computer example of real-world 
data storage is a stack of index cards. 

• These cards can be used for a variety of 
purposes. If each card holds a person's 

© 2008, University of Colombo School of Computing 13

purposes. If each card holds a person's 
name, address, and phone number, the 
result is an address book. If each card 
holds the name location, and value of a 
household possession, the result is a 
home inventory.



1.3. Programmer’s Tools for data storage

• Not all data storage structures are used to store 
real-world data. 

• Typically, real-world data is accessed more or 
less directly by a program's user. 

• Some data storage structures, however, are not 

© 2008, University of Colombo School of Computing 14

• Some data storage structures, however, are not 
meant to be accessed by the user, but by the 
program itself. 

• A programmer uses such structures as tools to 
facilitate some other operation. 

Eg: Stacks, queues, and priority queues are 
often used in this way. 



1.3. Real- world Modeling for data 

storage
• Some data structures directly model a real-world 

situation. 

• The most important data structure of this type is the 
graph. 

• You can use graphs to represent airline routes 
between cities, connections in an electrical circuit, 

© 2008, University of Colombo School of Computing 15

between cities, connections in an electrical circuit, 
or tasks in a project. 

• Other data structures, such as stacks, queues, and 
priority queues, may also be used in simulations. 

• A queue, for example, can model customers 
waiting in line at a bank.


