5. Trees
Part -2
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5.6. Balancing a tree

BSTs where introduced because in theory
they give nice fast search time.

We have seen that depending on how the
data arrives the tree can degrade into a
linked list

So what is a good programmer to do.
Of course, they are to balance the tree
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5.6. Balancing a tree -ideas

* One idea would be to get all of the data
first, and store it in an array

* Then sort the array and then insert it in a
free

 Of course this does have some drawbacks
so we need another idea
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5.6.1. DSW Trees

* Named for Colin Day and then for Quentin F.
Stout and Bette L. Warren, hence DSW.

« The main idea is a rotation

 rotateRight( Gr, Par, Ch )

— If Par is not the root of the tree
« Grandparent Gr of child Ch, becomes Ch’s parent by
replacing Par;
— Right subtree of Ch becomes left subtree of Ch’s
parent Par;

— Node Ch aquires Par as its right child
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Maybe a picture will help
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5.6.1.1. More of the DSW

» So the idea is to take a tree and perform
some rotations to it to make it balanced.

 First you create a backbone or a vine

* Then you transform the backbone into a
nicely balanced tree
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5.6.1.2. Algorithms

« createBackbone(root, < createPerfectTree(n)

N ) - M= 2f|oor[|g(n+1)]_1;
— ITmp = root — Make n-M rotations
— While (Tmp !=0) starting from the top of

+ If Tmp has a left child the backbone;

— Rotate this child — While (M >1)
about Tmp e M= M/2:

— Set Tmp to the child _
which just became ’ Makg M rotations
starting from the top of

parent
» Else set Tmp to its right the backbone;

child
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Maybe some more pictures
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5.6.1.3. Wrap-up

 The DSW algorithm is good if you can take
the time to get all the nodes and then
create the tree

« What if you want to balance the tree as
you go”?
* You use an AVL Tree
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5.6.2. AVL Trees

Named after its inventors Adel’son-Vel'skii
and Landis, hence AVL

The heights of any subtree can only differ
by at most one.

Each nodes will indicate balance factors.

Worst case for an AVL tree is 44% worst
then a perfect tree.

In practice, it is closer to a perfect tree.
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5.6.2.1. What does an AVL do?

« Each time the tree structure is changed,
the balance factors are checked and if an
imbalance is recognized, then the tree is
restructured.

 For insertion there are four cases to be
concerned with.

 Deletion is a little trickier.
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5.6.2.2. AVL Insertion

» Case 1: Insertion into a right subtree of a
right child.

— Requires a left rotation about the child

 Case 2: Insertion into a left subtree of a
right child.

— Requires two rotations
« First a right rotation about the root of the subtree
« Second a left rotation about the subtree’s parent
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Some more pictures
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FIGURE 6.4]-2 Balancing a tree after insertion of a node in the left subtree of node Q.
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5.6.2.3. Deletion

Deletion is a bit trickier.

With insertion after the rotation we were
done.

Not so with deletion.

We need to continue checking balance
factors as we travel up the tree
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5.6.2.4. Deletion Specifics

» Go ahead and delete the node just like In
a BST.

 There are 4 cases after the deletion:

? © 2008, University of Colombo School of Computing @ 15
UCSC



Cases

» Case 1: Deletion from a left subtree from a
tree with a right high root and a right high
right subtree.

— Requires one left rotation about the root

» Case 2: Deletion from a left subtree from a
tree with a right high root and a balanced
right subtree.

— Requires one left rotation about the root
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Cases continued

» Case 3: Deletion from a left subtree from a tree
with a right high root and a left high right subtree
with a left high left subtree.

— Requires a right rotation around the right subtree root
and then a left rotation about the root

» Case 4: Deletion from a left subtree from a tree
with a right high root and a left high right subtree
with a right high left subtree

— Requires a right rotation around the right subtree root
and then a left rotation about the root
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Definitely some pictures
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5.7. Self-adjusting Trees

* The previous sections discussed ways to
balance the tree after the tree was
changed due to an insert or a delete.

* There is another option.

* You can alter the structure of the tree after
you access an element

— Think of this as a self-organizing tree
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5.8. Heaps

* A heap is a binary tree storing keys at its internal
nodes and satisfying the following properties:

— Heap-Order: for every internal node v other than the
root,
key(v) 2 key(parent(v))

— Complete Binary Tree: let h be the height of the
heap

« fori=0, ..., h-1,there are 2i nodes of depth /

« at depth h - 1, the internal nodes are to the left of the
external nodes
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9.8. Heaps contd...

—The last node of a heap is the rightmost internal node of depth h - 1

S 45

last node
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5.8.1. Height of a Heap

* Theorem: A heap storing n keys has
height O(log n)

* Proof: (we apply the complete binary tree
property)
— Let h be the height of a heap storing n keys

— Since there are 2ikeys atdepth i=0, ... , h—
2 and at least one key at depth h- 1, we
havenz1+2+4 +... + 2h-2 + 1

—Thus, n=2h-1 ,i.e., h<log n+ 1
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5.8.1. Height of a Heap contd...

depth keys
0

1
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5.8.2. Heaps and Priority Queues

We can use a heap to implement a priority queue
We store a (key, element) item at each internal node
We keep track of the position of the last node

For simplicity, we show only the keys in the pictures
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5.8.3. Insertion into a
Heap

* Method insertltem of the priority queue ADT corresponds

to the insertion of a key k to the heap @
R
9. XL

insertior node

« The insertion algorithm consists of three steps

— Find the insertion node z
(the new last node) JON
[]

— Store kat zand expand z ol
into an internal node 5 ) ‘@
— Restore the heap-order property sinEE nlln
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5.8.4. Removal from a Heap

 Method removeMin of the priority
queue ADT corresponds to the
removal of the root key from the
heap

« The removal algorithm consists of
three steps

— Replace the root key with the
key of the last node w

— Compress w and its children
into a leaf

— Restore the heap-order
property
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