
5. Trees

© 2008, University of Colombo School of Computing 1

5. Trees

Part -2

5.6. Balancing a tree

• BSTs where introduced because in theory
they give nice fast search time.

• We have seen that depending on how the
data arrives the tree can degrade into a

© 2008, University of Colombo School of Computing 2

data arrives the tree can degrade into a
linked list

• So what is a good programmer to do.

• Of course, they are to balance the tree

5.6. Balancing a tree -ideas

• One idea would be to get all of the data
first, and store it in an array

• Then sort the array and then insert it in a
tree

© 2008, University of Colombo School of Computing 3

tree

• Of course this does have some drawbacks
so we need another idea

5.6.1. DSW Trees

• Named for Colin Day and then for Quentin F.

Stout and Bette L. Warren, hence DSW.

• The main idea is a rotation

• rotateRight(Gr, Par, Ch)

© 2008, University of Colombo School of Computing 4

• rotateRight(Gr, Par, Ch)

– If Par is not the root of the tree

• Grandparent Gr of child Ch, becomes Ch’s parent by
replacing Par;

– Right subtree of Ch becomes left subtree of Ch’s

parent Par;

– Node Ch aquires Par as its right child

Maybe a picture will help

© 2008, University of Colombo School of Computing 5

5.6.1.1. More of the DSW

• So the idea is to take a tree and perform
some rotations to it to make it balanced.

• First you create a backbone or a vine

• Then you transform the backbone into a

© 2008, University of Colombo School of Computing 6

• Then you transform the backbone into a
nicely balanced tree

5.6.1.2. Algorithms

• createBackbone(root,

n)

– Tmp = root

– While (Tmp != 0)

• createPerfectTree(n)

– M = 2floor[lg(n+1)]-1;

– Make n-M rotations

starting from the top of

the backbone;

© 2008, University of Colombo School of Computing 7

• If Tmp has a left child

– Rotate this child

about Tmp

– Set Tmp to the child

which just became

parent

• Else set Tmp to its right
child

the backbone;

– While (M > 1)

• M = M/2;

• Make M rotations
starting from the top of
the backbone;

Maybe some more pictures

© 2008, University of Colombo School of Computing 8

5.6.1.3. Wrap-up

• The DSW algorithm is good if you can take
the time to get all the nodes and then
create the tree

• What if you want to balance the tree as

© 2008, University of Colombo School of Computing 9

• What if you want to balance the tree as
you go?

• You use an AVL Tree

5.6.2. AVL Trees

• Named after its inventors Adel’son-Vel’skii
and Landis, hence AVL

• The heights of any subtree can only differ
by at most one.

© 2008, University of Colombo School of Computing 10

by at most one.

• Each nodes will indicate balance factors.

• Worst case for an AVL tree is 44% worst
then a perfect tree.

• In practice, it is closer to a perfect tree.

5.6.2.1. What does an AVL do?

• Each time the tree structure is changed,
the balance factors are checked and if an
imbalance is recognized, then the tree is
restructured.

© 2008, University of Colombo School of Computing 11

restructured.

• For insertion there are four cases to be
concerned with.

• Deletion is a little trickier.

5.6.2.2. AVL Insertion

• Case 1: Insertion into a right subtree of a
right child.

– Requires a left rotation about the child

• Case 2: Insertion into a left subtree of a

© 2008, University of Colombo School of Computing 12

• Case 2: Insertion into a left subtree of a
right child.

– Requires two rotations

• First a right rotation about the root of the subtree

• Second a left rotation about the subtree’s parent

Some more pictures

© 2008, University of Colombo School of Computing 13

5.6.2.3. Deletion

• Deletion is a bit trickier.

• With insertion after the rotation we were
done.

• Not so with deletion.

© 2008, University of Colombo School of Computing 14

• Not so with deletion.

• We need to continue checking balance
factors as we travel up the tree

5.6.2.4. Deletion Specifics

• Go ahead and delete the node just like in
a BST.

• There are 4 cases after the deletion:

© 2008, University of Colombo School of Computing 15

Cases

• Case 1: Deletion from a left subtree from a
tree with a right high root and a right high
right subtree.

– Requires one left rotation about the root

© 2008, University of Colombo School of Computing 16

– Requires one left rotation about the root

• Case 2: Deletion from a left subtree from a
tree with a right high root and a balanced
right subtree.

– Requires one left rotation about the root

Cases continued

• Case 3: Deletion from a left subtree from a tree

with a right high root and a left high right subtree

with a left high left subtree.

– Requires a right rotation around the right subtree root

and then a left rotation about the root

© 2008, University of Colombo School of Computing 17

and then a left rotation about the root

• Case 4: Deletion from a left subtree from a tree

with a right high root and a left high right subtree

with a right high left subtree

– Requires a right rotation around the right subtree root

and then a left rotation about the root

Definitely some pictures

© 2008, University of Colombo School of Computing 18

5.7. Self-adjusting Trees

• The previous sections discussed ways to
balance the tree after the tree was
changed due to an insert or a delete.

• There is another option.

© 2008, University of Colombo School of Computing 19

• There is another option.

• You can alter the structure of the tree after
you access an element

– Think of this as a self-organizing tree

5.8. Heaps

• A heap is a binary tree storing keys at its internal

nodes and satisfying the following properties:

– Heap-Order: for every internal node v other than the

root,

key(v) ≥ key(parent(v))

© 2008, University of Colombo School of Computing 20

key(v) ≥ key(parent(v))

– Complete Binary Tree: let h be the height of the

heap

• for i = 0, … , h − 1, there are 2i nodes of depth I

• at depth h − 1, the internal nodes are to the left of the
external nodes

5.8. Heaps contd…

–The last node of a heap is the rightmost internal node of depth h − 1

© 2008, University of Colombo School of Computing 21

5.8.1. Height of a Heap

• Theorem: A heap storing n keys has
height O(log n)

• Proof: (we apply the complete binary tree
property)

© 2008, University of Colombo School of Computing 22

property)
– Let h be the height of a heap storing n keys

– Since there are 2i keys at depth i = 0, … , h −
2 and at least one key at depth h − 1, we
have n ≥ 1 + 2 + 4 +… + 2h−2 + 1

– Thus, n ≥ 2h−1 , i.e., h ≤ log n + 1

5.8.1. Height of a Heap contd…

© 2008, University of Colombo School of Computing 23

5.8.2. Heaps and Priority Queues

• We can use a heap to implement a priority queue

• We store a (key, element) item at each internal node

• We keep track of the position of the last node

• For simplicity, we show only the keys in the pictures

© 2008, University of Colombo School of Computing 24

5.8.3. Insertion into a

Heap
• Method insertItem of the priority queue ADT corresponds

to the insertion of a key k to the heap

© 2008, University of Colombo School of Computing 25

• The insertion algorithm consists of three steps
– Find the insertion node z

(the new last node)

– Store k at z and expand z
into an internal node

– Restore the heap-order property

5.8.4. Removal from a Heap

• Method removeMin of the priority
queue ADT corresponds to the
removal of the root key from the
heap

• The removal algorithm consists of
three steps

© 2008, University of Colombo School of Computing 26

three steps

– Replace the root key with the
key of the last node w

– Compress w and its children
into a leaf

– Restore the heap-order
property

