
2. Stacks, Queues and
Hashing

© 2008, University of Colombo School of Computing 1

Hashing

2.1. Stacks

• A stack is a data structure in which all the
access is restricted to the most recently
inserted items.

• If we remove this item, then we can

© 2008, University of Colombo School of Computing 2

• If we remove this item, then we can
access the next-to-last item inserted, and
etc.

• A stack is also a handy aid for algorithms
applied to certain complex data structures.

Stack Model contd…

• Input to a stack is by push

• Access is by top

© 2008, University of Colombo School of Computing 3

• Access is by top

• Deletion is by pop

Example

• Stack contains 3, 4

• Push item 9

– Now the stack contains 3,4,9

© 2008, University of Colombo School of Computing 4

– Now the stack contains 3,4,9

• If we pop now, we get 9

• If we pop again, we get 4

Stack Properties

• The last item added to the stack is placed
on the top and is easily accessible.

• Thus the stack is appropriate if we expect

© 2008, University of Colombo School of Computing 5

• Thus the stack is appropriate if we expect
to access on the top item, all other items
are inaccessible.

2.1.3. Important stack applications

• Compiler Design

• Mathematical Expression Evaluation

• Balanced Spell Checker

• Simple Calculator

© 2008, University of Colombo School of Computing 6

• Simple Calculator

The stack operations

• clear() – Clear the stack

• isEmpty() – Check to see if the stack is empty

• push(el) – Put the element el on top of the stack.

• pop() – Take the topmost element from stack.

• topEl() – Return the topmost element in the stack

© 2008, University of Colombo School of Computing 7

• topEl() – Return the topmost element in the stack

without removing it.

2.1.1. Implementation Of Stacks

• There are two basic ways to arrange for
constant time operations.

– The first is to store the items contiguously in

an array.

© 2008, University of Colombo School of Computing 8

an array.

– And the second is to store items non-

contiguously in a linked list

Array Implementation

• To push an item into an empty stack, we
insert it at array location 0. (since all java
arrays start at 0)

• To push the next item into the location 0

© 2008, University of Colombo School of Computing 9

• To push the next item into the location 0
over the location to make room for new
item.

• This is easily done by defining an auxiliary

integer variable known as stack pointer, which

stores the array index currently being used as

the top of the stack.

• A stack can be implemented with an array and

Array Implementation contd…

© 2008, University of Colombo School of Computing 10

• A stack can be implemented with an array and

an integer.

• The integer TOS (top of stack) provides the

array index of the top element of the stack,

when TOS is –1 , the stack is empty.

Stacks specifies two data fields

such as

• The array (which is expanded as needed
stores the items in the stack)

• TopOfStack (TOS) (gives the index of

© 2008, University of Colombo School of Computing 11

• TopOfStack (TOS) (gives the index of
the current top of the stack, if stack is
empty, this index is –1.)

Algorithms For Pushing & Popping

PUSH

• If stack is not full then

• Add 1 to the stack pointer.

© 2008, University of Colombo School of Computing 12

• Add 1 to the stack pointer.

• Store item at stack pointer location.

Algorithms For Pushing & Popping
contd…

POP

• If stack is not empty then

• Read item at stack pointer location.

© 2008, University of Colombo School of Computing 13

• Read item at stack pointer location.

• Subtract 1 from the stack pointer.

How to stack routines work:empty

stack;push(a),push(b);pop

Push (a)

TOS (0)

a

Stack is empty TOS(-1)

© 2008, University of Colombo School of Computing 14

Push (a)

Push (b)

b

a

Stack is empty TOS(-1)

TOS (1)

pop

TOS (0)
a

Java implementation

• Zero parameter constructor for array
based stack

public stackar()

© 2008, University of Colombo School of Computing 15

public stackar()

/* construct the stack

{

thearray= new object[default-capacity];

Tos = -1;

}

Isempty : returns true if stack is

empty, false otherwise
• Isempty()

public Boolean Isempty()

© 2008, University of Colombo School of Computing 16

public Boolean Isempty()

{

return tos= = -1

}

Isfull() : returns true if stack
is full , false otherwise

• Isfull()

public Boolean isfull()

{

© 2008, University of Colombo School of Computing 17

{

return tos= = stacksize-1; (default capacity)

}

push method for array based stack

• Insert a new item into the stack

public void push (object x)

{

© 2008, University of Colombo School of Computing 18

{

If isfull()

throw new stackexception (“ stack is full”)

theArray[++tos]=x;

}

Pop method for array based stack

• Remove the most recently inserted item from
the stack

• Exception underflow if the stack is empty

public void pop() throws underflow

© 2008, University of Colombo School of Computing 19

public void pop() throws underflow

{

If (isempty())

throw new underflow (“stackpop”);

tos - - ;

}

Top method for array based stack

• Return the most recently inserted item
from the stack

• Exception underflow if the stack is
empty

© 2008, University of Colombo School of Computing 20

empty
public object top() throws underflow

{

if (isEmpty())

throw new underflow(“stacktop”)

return theArray[tos];

}

Top and pop method for array based stack

• Return and remove the most recently
inserted item from the stack

• Exception underflow if the stack is empty

public object topandpop() throws underflow

© 2008, University of Colombo School of Computing 21

public object topandpop() throws underflow

{

if isEmpty())

throw new underflow (“stack topandpop”);

return theArray[tos - -];

}

Java Code for a Stack

import java.io.*; // for I/O

class StackX

{

private int maxSize; // size of stack array

private double[] stackArray;

private int top; // top of stack

//---

© 2008, University of Colombo School of Computing 22

//---

public StackX(int s) // constructor

{

maxSize = s; // set array size

stackArray = new double[maxSize]; // create array

top = -1; // no items yet

}

//---

Java Code for a Stack
public void push(double j) // put item on top of stack {

stackArray[++top] = j; // increment top, insert item

}

//---

public double pop() // take item from top of stack {

return stackArray[top--]; // access item, decrement top

}

//---

© 2008, University of Colombo School of Computing 23

public double peek() // peek at top of stack {

return stackArray[top];

}

//---

-

public boolean isEmpty() // true if stack is empty

{

return (top == -1);

}

Java Code for a Stack

//---

-

public boolean isFull() // true if stack is full

{

return (top == maxSize-1);

}

© 2008, University of Colombo School of Computing 24

}

//---

-

} // end class StackX

Java Code for a Stack

class StackApp {

public static void main(String[] args)

{

StackX theStack = new StackX(10); // make new stack

theStack.push(20); // push items onto stack

theStack.push(40);

theStack.push(60);

theStack.push(80);

while(!theStack.isEmpty()) // until it's empty,

© 2008, University of Colombo School of Computing 25

while(!theStack.isEmpty()) // until it's empty,

{ // delete item from

stack double value = theStack.pop();

System.out.print(value); // display it

System.out.print(" ");

} // end while

System.out.println("");

} // end main()

} // end class StackApp

Java Code for a Stack

• The main() method in the StackApp class

creates a stack that can hold 10 items, pushes 4

items onto the stack, and then displays all the

items by popping them off the stack until it's

empty.

© 2008, University of Colombo School of Computing 26

empty.

• Here's the output:

80 60 40 20

StackX Class Methods

• The constructor creates a new stack of a size

specified in its argument.

• The fields of the stack comprise a variable to hold

its maximum size (the size of the array), the array

© 2008, University of Colombo School of Computing 27

its maximum size (the size of the array), the array

itself, and a variable top, which stores the index of

the item on the top of the stack.
(Note that we need to specify a stack size only because the stack is
implemented using an array. If it had been implemented using a linked
list, for example, the size specification would be unnecessary.)

StackX Class Methods

• The push() method increments top so it points to the space just
above the previous top, and stores a data item there. Notice that top
is incremented before the item is inserted.

• The pop() method returns the value at top and then decrements
top. This effectively removes the item from the stack; it's
inaccessible, although the value remains in the array (until another

© 2008, University of Colombo School of Computing 28

inaccessible, although the value remains in the array (until another
item is pushed into the cell).

• The peek() method simply returns the value at top, without changing
the stack.

• The isEmpty() and isFull() methods return true if the stack is empty
or full, respectively. The top variable is at –1 if the stack is empty
and maxSize-1 if the stack is full.

Error Handling

• There are different philosophies about how to

handle stack errors. What happens if you try to

push an item onto a stack that's already full, or

pop an item from a stack that's empty?

© 2008, University of Colombo School of Computing 29

• We've left the responsibility for handling such

errors up to the class user. The user should

always check to be sure the stack is not full

before inserting an item:

Error Handling

if(!theStack.isFull())

insert(item);

else

System.out.print("Can't insert, stack is full");

© 2008, University of Colombo School of Computing 30

• In the interest of simplicity, we've left this code out of the main() routine (and

anyway, in this simple program, we know the stack isn't full because it has just

been initialized).

• We do include the check for an empty stack when main() calls pop().

2.1.2. Efficiency of Stacks

• Items can be both pushed and popped
from the stack implemented in the StackX
class in constant O(1) time.

• That is, the time is not dependent on how

© 2008, University of Colombo School of Computing 31

• That is, the time is not dependent on how
many items are in the stack, and is
therefore very quick.

• No comparisons or moves are necessary.

2.2. Queues
• A queue is a special kind of list

• Items are inserted at one end (the rear) and

(enqueue)

• deleted at the other end (the front).
(dequeue)

© 2008, University of Colombo School of Computing 32

(dequeue)

• Queues are also known as ‘FIFO lists’
Front

Back

Inserted
Removed A B

2.2. Queues

• There are various queues quietly doing their job in our
computer's (or the network's) operating system.

• There's a printer queue where print jobs wait for the
printer to be available.

• A queue also stores keystroke data as we type at the
keyboard.

© 2008, University of Colombo School of Computing 33

• A queue also stores keystroke data as we type at the
keyboard.

• This way, if we are using a word processor but the
computer is briefly doing something else when we hit a
key, the keystroke won't be lost; it waits in the queue
until the word processor has time to read it.

• Using a queue guarantees the keystrokes stay in order
until they can be processed.

2.2.1. The Queue operations

• clear() – Clear the queue

• isEmpty() – Check to see if the queue is empty

• enqueue(el) – Put the element el on top of the queue.

• dequeue() – Take the first element from queue.

• firstEl() – Return the first element in the queue without

© 2008, University of Colombo School of Computing 34

• firstEl() – Return the first element in the queue without

removing it.

2.2.2. A Circular Queue

• When we insert a new item in the queue in the
Workshop applet, the Front arrow moves upward, toward
higher numbers in the array.

• When we remove an item, Rear also moves upward.

• we may find the arrangement counter-intuitive, because
the people in a line at the movies all move forward,

© 2008, University of Colombo School of Computing 35

• we may find the arrangement counter-intuitive, because
the people in a line at the movies all move forward,
toward the front, when a person leaves the line.

• We could move all the items in a queue whenever we
deleted one, but that wouldn't be very efficient.

• Instead we keep all the items in the same place and
move the front and rear of the queue.

2.2.2. A Circular Queue contd…

• To avoid the problem of not being able to
insert more items into the queue even
when it's not full, the Front and Rear
arrows wrap around to the beginning of

© 2008, University of Colombo School of Computing 36

arrows wrap around to the beginning of
the array. The result is a circular queue

2.2.3. Java Code for a Queue

• The queue.java program features a Queue class
with insert(), remove(), peek(), isFull(),
isEmpty(), and size() methods.

• The main() program creates a queue of five
cells, inserts four items, removes three items,

© 2008, University of Colombo School of Computing 37

cells, inserts four items, removes three items,
and inserts four more. The sixth insertion
invokes the wraparound feature. All the items
are then removed and displayed.

• The output looks like this:
40 50 60 70 80

The Queue.java Program

import java.io.*; // for I/O

class Queue {

private int maxSize;

private int[] queArray;

private int front;

private int rear;

private int nItems;

//---

© 2008, University of Colombo School of Computing 38

//---

public Queue(int s) // constructor

{

maxSize = s;

queArray = new int[maxSize];

front = 0;

rear = -1;

nItems = 0;

}

//---

The Queue.java Program
public void insert(int j) // put item at rear of queue

{

if(rear == maxSize-1) // deal with wraparound

rear = -1;

queArray[++rear] = j; // increment rear and

insert

nItems++; // one more item

}

© 2008, University of Colombo School of Computing 39

}

//---

-

public int remove() // take item from front of queue

{

int temp = queArray[front++]; // get value and incr front

if(front == maxSize) // deal with wraparound

front = 0;

nItems--; // one less item

return temp;

}

//---

The Queue.java Program
public int peekFront() { // peek at front of queue

return queArray[front];

}

//---

public boolean isEmpty() { // true if queue is empty

return (nItems==0);

}

//---

© 2008, University of Colombo School of Computing 40

//---

public boolean isFull() { // true if queue is full

return (nItems==maxSize);

}

//---

public int size() { // number of items in queue

return nItems;

}

//---

} // end class Queue

The Queue.java Program
class QueueApp {

public static void main(String[] args) {

Queue theQueue = new Queue(5); // queue holds 5 items

theQueue.insert(10); // insert 4 items

theQueue.insert(20);

theQueue.insert(30);

theQueue.insert(40);

theQueue.remove(); // remove 3 items

© 2008, University of Colombo School of Computing 41

theQueue.remove(); // remove 3 items

theQueue.remove(); // (10, 20, 30)

theQueue.remove();

theQueue.insert(50); // insert 4 more items

theQueue.insert(60); // (wraps around)

theQueue.insert(70);

theQueue.insert(80);

while(!theQueue.isEmpty()) { // remove and display all items

int n = theQueue.remove(); // (40, 50, 60, 70, 80)

System.out.print(n);

The Queue.java Program
System.out.print(" ");

}

System.out.println("");

} // end main()

} // end class QueueApp

© 2008, University of Colombo School of Computing 42

2.2.3.1. Efficiency of Queues

• As with a stack, items can be inserted and
removed from a queue in O(1) time.

© 2008, University of Colombo School of Computing 43

2.2.3.2. Deques
• A deque is a double-ended queue.

• We can insert items at either end and delete them from
either end.

• The methods might be called insertLeft() and
insertRight(), and removeLeft() and removeRight().

• If we restrict ourself to insertLeft() and removeLeft() (or
their equivalents on the right), then the deque acts like a

© 2008, University of Colombo School of Computing 44

their equivalents on the right), then the deque acts like a
stack.

• If we restrict ourself to insertLeft() and removeRight() (or
the opposite pair), then it acts like a queue.

• A deque provides a more versatile data structure than
either a stack or a queue, and is sometimes used in
container class libraries to serve both purposes.

• However, it's not used as often as stacks and queues, so
we won't explore it further here.

2.2.4. Priority Queues

• A priority queue is a more specialized data structure than
a stack or a queue.

• However, it's a useful tool in a surprising number of
situations.

• Like an ordinary queue, a priority queue has a front and
a rear, and items are removed from the front.

© 2008, University of Colombo School of Computing 45

• Like an ordinary queue, a priority queue has a front and
a rear, and items are removed from the front.

• However, in a priority queue, items are ordered by key
value, so that the item with the lowest key (or in some
implementations the highest key) is always at the front.

• Items are inserted in the proper position to maintain the
order.

2.2.4.1. Efficiency of Priority
Queues

• In the priority-queue implementation we
show here, insertion runs in O(N) time,
while deletion takes O(1) time.

© 2008, University of Colombo School of Computing 46

2.3. Hash Functions

• Choosing a good hashing function, h(k), is

essential for hash-table based searching.

• The key criterion is that there should be a

minimum number of collisions.

© 2008, University of Colombo School of Computing 47

minimum number of collisions.

• Sophisticated hash functions – may avoid

collisions,computational cost in determining h(k)

can be prohibitive.

• Less sophisticated methods may be faster.

2.3. Hash Functions contd…

• The number of hash functions that can be used

to assign positions to n items in a table of m

positions (for n <= m) is equal to mn.

© 2008, University of Colombo School of Computing 48

• Some specific types of hash functions are:

– Division

h(k) = K mod TSize Tsize = sizeof(table)

Usually the preferred choice for the hash

function if very little is known about the keys.

2.3. Hash Functions contd…

– Mid-Square Function

The key is squared and the middle or mid part

of the result is used as the address. If the key

is a string, it has to be pre-processed to

© 2008, University of Colombo School of Computing 49

is a string, it has to be pre-processed to

produce a number.

e.g. if the key is 3121 then 31212 = 9740641

and h(3121) = 406.

2.3. Hash Functions contd…

– Extraction

Only a part of the key is used to compute the

address. For the key 123-45-6789 this

method might use the

© 2008, University of Colombo School of Computing 50

method might use the

first four digits 1234

last four digits 6789

the first two combined with last two 1289 or

some other combination

2.3. Hash Functions contd…

- Radix Transformation

The key is transformed into another
number base.

e.g. If K is the decimal number 345, then

© 2008, University of Colombo School of Computing 51

e.g. If K is the decimal number 345, then
its value in base 9 is 423. This value is
then divided modulo TSize, and the
resulting number is used as the address of
the location to which K should be hashed.

