
6. Graphs
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6.1. Definition of different Graphs

• A graph is the basic object of study in graph theory. 
Informally speaking, a graph is a set of objects called 
points, nodes, or vertices connected by links called lines
or edges. In a proper graph, which is by default 
undirected, a line from point A to point B is considered to 
be the same thing as a line from point B to point A. In a 
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be the same thing as a line from point B to point A. In a 
digraph, short for directed graph, the two directions are 
counted as being distinct arcs or directed edges. 
Typically, a graph is depicted in diagrammatic form as a 
set of dots (for the points, vertices, or nodes), joined by 
curves (for the lines or edges). 



6.1. Definition of different Graphs 

contd…

• A graph or undirected graph G is an 
ordered pair G: = (V,E) that is subject to 
the following conditions: 

• V is a set, whose elements are called vertices or 
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• V is a set, whose elements are called vertices or 

nodes, 

• E is a multiset of unordered pairs of vertices (not 

necessarily distinct), called edges or lines. 

(Note that this defines the most general type of graph. Some 
authors call this a multigraph and reserve the term "graph" for 

simple graphs.)



6.1. Definition of different Graphs 

contd…
• The vertices belonging to an edge are called the ends, endpoints, or end 

vertices of the edge.

• V (and hence E) are usually taken to be finite, and many of the well-known 
results are not true (or are rather different) for infinite graphs because 
many of the arguments fail in the infinite case. The order of a graph is | V | 
(the number of vertices). A graph's size is | E | , the number of edges. The 
degree of a vertex is the number of edges that connect to it, where an edge 
that connects to the vertex at both ends (a loop) is counted twice.
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that connects to the vertex at both ends (a loop) is counted twice.

• The edges E induce a symmetric binary relation ~ on V which is called the 
adjacency relation of G. Specifically, for each edge {u,v} the vertices u and 
v are said to be adjacent to one another, which is denoted u ~ v.

• For an edge {u, v}, graph theorists usually use the somewhat shorter 
notation uv.



6.1. Definition of different Graphs 

contd…

• Types of graphs

– Directed graph

• A directed graph or digraph G is an ordered pair G: = (V,A) 
with 

– V is a set, whose elements are called vertices or nodes, 

© 2008, University of Colombo School of Computing 5

– V is a set, whose elements are called vertices or nodes, 

– A is a set of ordered pairs of vertices, called directed edges, 

arcs, or arrows. 

• An arc e = (x,y) is considered to be directed from x to y; y is 
called the head and x is called the tail of the arc; y is said to 
be a direct successor of x, and x is said to be a direct 
predecessor of y. If a path leads from x to y, then y is said to 
be a successor of x, and x is said to be a predecessor of y. 
The arc (y,x) is called the arc (x,y) inverted.



6.1. Definition of different Graphs 

contd…
– Directed graph contd..

• A directed graph G is called symmetric if, for every arc that 
belongs to G, the corresponding inverted arc also belongs to G. 
A symmetric loopless directed graph is equivalent to an 
undirected graph with the pairs of inverted arcs replaced with 
edges; thus the number of edges is equal to the number of arcs 
halved.
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halved.
• A variation on this definition is the oriented graph, which is a 

graph (or multigraph; see below) with an orientation or direction 
assigned to each of its edges. A distinction between a directed 
graph and an oriented simple graph is that if x and y are 
vertices, a directed graph allows both (x,y) and (y,x) as edges, 
while only one is permitted in an oriented graph. A more 
fundamental difference is that, in a directed graph (or 
multigraph), the directions are fixed, but in an oriented graph 
(or multigraph), only the underlying graph is fixed, while the 
orientation may vary.



6.1. Definition of different Graphs 

contd…
• Types of graphs

– Undirected graph

A graph G = {V,E} in which every edge is undirected. This is the same as a 
digraph (look above) where for an edge (v,u) there is an edge from v to u and u
to v. 

– Finite graph
A finite graph is a graph G = <V,E> such that V(G) and E(G) are finite 
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A finite graph is a graph G = <V,E> such that V(G) and E(G) are finite 
sets. 

– Simple graph
A simple graph is an undirected graph that has no self-loops and no 
more than one edge between any two different vertices. In a simple 
graph the edges of the graph form a set (rather than a multiset) and 
each edge is a pair of distinct vertices. In a simple graph with p vertices 

every vertex has a degree that is less than p.



6.1. Definition of different Graphs 

contd…

• Types of graphs

– Regular graph

A regular graph is a graph where each vertex has the same number of 

neighbors, i.e., every vertex has the same degree or valency. A regular 

graph with vertices of degree k is called a k-regular graph or regular 
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graph with vertices of degree k is called a k-regular graph or regular 

graph of degree k. 

– Weighted graph

A graph is a weighted graph if a number (weight) is assigned to 
each edge. Such weights might represent, for example, costs, 
lengths or capacities, etc. depending on the problem.

Weight of the graph is sum of the weights given to all edges.



6.1. Definition of different Graphs 

contd…
• Types of graphs

– Mixed graph
A mixed graph G is a graph in which some edges may be 
directed and some may be undirected. It is written as an ordered 
triple G := (V, E, A) with V, E, and A defined as above. Directed 
and undirected graphs are special cases. 
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and undirected graphs are special cases. 

– Complete graph
Complete graphs have the feature that each pair of vertices has an 

edge connecting them.

– Loop
A loop is an edge (directed or undirected) which starts and ends on the same 

vertex; these may be permitted or not permitted according to the application. In 

this context, an edge with two different ends is called a link. 



6.1. Definition of different Graphs 

contd…

• Types of graphs

– Multi graph
The term "multigraph" is generally understood to mean that multiple 

edges (and sometimes loops) are allowed. Where graphs are defined so 

as to allow loops and multiple edges, a multigraph is often defined to 
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as to allow loops and multiple edges, a multigraph is often defined to 

mean a graph without loops,however, where graphs are defined so as 

to disallow loops and multiple edges, the term is often defined to mean 

a "graph" which can have both multiple edges and loops, although many 

use the term "pseudograph" for this meaning. 

– Half-edges, loose edges

In exceptional situations it is even necessary to have edges with 

only one end, called half-edges, or no ends (loose edges).



6.2. Graph Representation

• Two common ways to represent graphs on a computer are as an adjacency 
list or as an adjacency matrix. 

– Adjacency list:
Vertices are labelled (or re-labelled) from 0 to  |V(G)|-1. 
Corresponding to each vertex is a list (either an array or linked 
list) of its neighbours. 

– Adjacency matrix:
Vertices are labelled (or re-labelled) with integers from 0 to 
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Vertices are labelled (or re-labelled) with integers from 0 to 
|V(G)|-1. A two-dimensional boolean array A  with dimensions 
|V(G)| x |V(G)| contains a 1 at A[i][j] 

– if there is an edge from the vertex labelled i to the vertex 
labelled j,and a 0 otherwise. 

Both representations allow us to represent directed graphs, since 
we can have an edge from vi to vj , but lack one from vi to vj . To 
represent undirected graphs, we simply make sure that are 
edges are listed twice: once from vi to vj , and once from vi to vj . 



Breadth first search

• Given a graph G=(V,E) and a source
vertex s, BFS explores the edges of G 
to “discover” (visit) each node of G 

6.3. Graph Traversals contd…
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to “discover” (visit) each node of G 
reachable from s.

• Idea - expand a frontier one step at a 
time.

• Frontier is a FIFO queue (O(1) time to 
update)



6.3. Graph Traversals contd…

• Computes the shortest distance (dist) from s
to any reachable node. 

• Computes a breadth first tree (of parents) 
with root s that contains all the reachable 

Breadth first search
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with root s that contains all the reachable 
vertices from s. 

• To get O(|V|+|E|) we use an adjacency list 
representation. If we used an adjacency 
matrix it would be Ο(|V|2)



6.3. Graph Traversals contd…

• We use colors (white, gray and black) to 
denote the state of the node during the 
search.

• A node is white if it has not been reached 

Coloring the nodes
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• A node is white if it has not been reached 
(discovered).

• Discovered nodes are gray or black. Gray
nodes are at the frontier of the search. 
Black nodes are fully explored nodes. 



BFS - initialize

procedure BFS(G:graph; s:node; var
color:carray; dist:iarray; parent:parray);

for each vertex u do

color[u]:=white; dist[u]:=∞;          ΘΘΘΘ(V)

6.3. Graph Traversals contd…
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color[u]:=white; dist[u]:=∞;          ΘΘΘΘ(V)

parent[u]:=nil; end for

color[s]:=gray; dist[s]:=0;

init(Q); enqueue(Q, s);



BFS - main

while not (empty(Q)) do

u:=head(Q);

for each v in adj[u] do                        

if color[v]=white then                            O(E)

6.3. Graph Traversals contd…
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if color[v]=white then                            O(E)

color[v]:=gray; dist[v]:=dist[u]+1;

parent[v]:=u; enqueue(Q, v); 

dequeue(Q); color[u]:=black; 

end BFS

)(][deg|][| EOureeuADJ

VuVu

∑∑
∈∈

==



r           s       t        u                  r            s       t        u

∞ ∞ ∞

∞ ∞
∞

∞

0

s w r

1 0 ∞ ∞

∞ 1
∞ ∞

BFS example

6.3. Graph Traversals contd…
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Analysis of BFS

• Initialization is Θ(|V|).

• Each node can be added to the queue at 
most once (it needs to be white), and its 
adjacency list is searched only once. At most 

6.3. Graph Traversals contd…
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adjacency list is searched only once. At most 
all adjacency lists are searched. 

• If graph is undirected each edge is reached 
twice, so loop repeated at most 2|E| times. 

• If graph is directed each edge is reached 
exactly once. So the loop repeated at most 
|E| times.

• Worst case time O(|V|+|E|)



Depth First Search

• Goal - explore every vertex and edge of G

• We go “deeper” whenever possible.

• Directed or undirected graph G = (V, E). 

Θ

6.3. Graph Traversals contd…
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• To get worst case time Θ(|V|+|E|) we use 
an adjacency list representation. If we 
used an adjacency matrix it would be 

Θ(|V|2)



• Until there are no more undiscovered nodes. 

– Picks  an undiscovered node and starts a depth first 

search from it. 

– The search proceeds from the most recently

discovered node to discover new nodes.

Depth First Search

6.3. Graph Traversals contd…
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discovered node to discover new nodes.

– When the last discovered node v is fully explored, 

backtracks to the node used to discover v. Eventually, 

the start node is fully explored.



• In this version all nodes are discovered even if 
the graph is directed, or undirected and not 
connected

• The algorithm saves:
– A depth first forest of the edges used to 

6.3. Graph Traversals contd…
Depth First Search
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– A depth first forest of the edges used to 
discover new nodes.

– Timestamps for the first time a node u is 
discovered d[u] and the time when the node is 
fully explored f[u]



6.3. Graph Traversals contd…

procedure DFS(G:graph; var color:carray; d, f:iarray;  

parent:parray);

for each vertex u do

color[u]:=white; parent[u]:=nil;                   ΘΘΘΘ(V)

end for

Depth First Search
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end for

time:=0;

for each vertex u do

if color[u]=white then                                    

DFS-Visit(u); end if; end for

end DFS



DFS-Visit(u)
color[u]=:gray; time:=time+1; d[u]:=time

for each v in adj[u] do

if color[v]=white then

parent[v]:=u;  DFS-Visit(v); 

6.3. Graph Traversals contd…
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parent[v]:=u;  DFS-Visit(v); 

end if; end for;

color[u]:=black; time:=time+1; f[u]:=time; 

end DFS-Visit



DFS example (1)
u         v        w  

1/

u         v        w  

1/ 2/

6.3. Graph Traversals contd…
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x         y        z x         y        z

u         v        w  

1/

x         y        z

2/

3/

u         v        w  

1/

x         y        z

2/

3/4/

B



DFS example (2)
u         v        w  

4/5

1/ 2/

3/

B

u         v        w  

4/5 3/6

1/ 2/

B

6.3. Graph Traversals contd…
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x         y        z

x         y        z

u         v        w  

x         y        z

4/5 4/5

4/5 3/6

1/ 2/7

B



DFS example (3)
u         v        w  u         v        w  

F

4/5 3/6

1/8 2/7

B F

4/5

9

3/6

1/8 2/7

B C

6.3. Graph Traversals contd…

© 2008, University of Colombo School of Computing 27

x         y        z

u         v        w  

x         y        z
x         y        z

u         v        w  

x         y        z

4/5 3/6 4/5 3/6

F

4/5

9

3/6 10

1/8 2/7

B F

4/5

9

3/6 10/11

1/8 2/7

B C
C



DFS example (4)

F

9/121/8 2/7

B C

u         v        w  

6.3. Graph Traversals contd…
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x         y        z

F

4/5 3/6 10/11

B C



Analysis
• DFS is Θ(|V|) (excluding the time taken by 

the DFS-Visits).

• DFS-Visit is called once for each node v. 
Its for loop is executed |adj(v)| times. The 

6.3. Graph Traversals contd…
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Its for loop is executed |adj(v)| times. The 
DFS-Visit calls for all the nodes take 

Θ(|E|). 

• Worst case time Θ(|V|+|E|)



6.4. Shortest Paths

• Example:

– In a flight route graph, the weight of
an edge represents the distance in
miles between the endpoint airports
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ORD
PVD

MIA
DFW

SFO

LAX

LGA

HNL



6.4 Shortest Paths contd…

• The weight of path p = < v0, v1,….vk> is
the sum of the weights of its constituent
edges.
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• Given a weighted graph and two vertices u and

v, we want to find a path of minimum total weight

between u and v.

– Length of a path is the sum of the weights of

its edges.



6.4 Shortest Paths contd…

Example: Shortest path between 
Providence and Honolulu

• Applications

– Internet packet routing 

– Flight reservations
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– Flight reservations

– Driving directions

ORD
PVD

MIA
DFW

SFO

LAX

LGA

HNL



6.4 Shortest Paths contd…

• We will focus on Single source shortest
paths problem: given a graph G = (V,E),
we want to find a shortest path from a
given source vertex s Є V to each vertex v
Є V.
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Є V.

Shortest Path Properties

Property 1: A sub path of a shortest path is itself a
shortest path.

Property 2: There is a tree of shortest paths from
a start vertex to all the other vertices.



6.4.1. Shortest Path Problem

Example:

Tree of shortest paths from Providence

ORD
PVD
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ORD
PVD

MIA
DFW

SFO

LAX

LGA

HNL



6.4.1. Shortest Path Problem

contd…

• The shortest path algorithms use the
technique of relaxation.

• For each vertex v Є V, an attribute d[v]
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• For each vertex v Є V, an attribute d[v]
is maintained which is an upper bound
on the weight of a shortest path from
source s to v.

• d[v] – shortest path estimate



6.4.2. Shortest Path Algorithms

• The shortest path estimates and
predecessors are initialized by the
following O(V) time procedure.
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INITIALIZE-SINGLE-SOURCE (G,s)
for each vertex v Є V[G]

do d[v] � ∞

π[v] � NIL

d[s] � 0



6.4.2. Shortest Path Algorithms 

contd…

• Relaxing and edge (u,v) – consists of
testing whether the shortest path to v
found so far can be improved by going
through u. If so d[v] and π[v] values
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through u. If so d[v] and π[v] values
should be updated.

• A relaxation step may decrease the
value of the shortest path estimate d[v].



6.4.3. Relaxation

• Relaxation of an edge (u,v) with weight 
w(u,v) = 2.

5 9 5 6
2 2u v u v
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5 9

5 7

5 6

5 6
2 2

d[v] > d[u] + w(u,v)                          d[v] ≤ d[u] + w(u,v)

d[v] is changed by relaxation            d[v] is unchanged by 

relaxation

Relax (u,v,w) Relax (u,v,w)

u uv v



6.4.3. Relaxation contd…

Relax (u,v,w)

if d[v] > d[u] + w(u,v)

then d[v] � d[u] + w(u,v)

π[v]  u
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π[v]  � u



6.5. Cycle Detection

• Cycle detection on a graph is a bit different 
than on a tree due to the fact that a graph 
node can have multiple parents. On a tree, 
the algorithm for detecting a cycle is to do 
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the algorithm for detecting a cycle is to do 
a depth first search, marking nodes as 
they are encountered. If a previously 
marked node is seen again, then a cycle 
exists. This won’t work on a graph.



6.5. Cycle Detection contd…

• The graph in figure will be falsely reported 
to have a cycle, since node C will be seen 
twice in a DFS starting at node A.
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6.5. Cycle Detection contd…

• The cycle detection algorithm for trees can easily be 
modified to work for graphs. The key is that in a DFS of 
an acyclic graph, a node whose descendants have all 
been visited can be seen again without implying a cycle. 
However, if a node is seen a second time before all of its 
descendants have been visited, then there must be a 
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descendants have been visited, then there must be a 
cycle. Can you see why this is? Suppose there is a cycle 
containing node A. Then this means that A must be 
reachable from one of its descendants. So when the 
DFS is visiting that descendant, it will see A again, 
before it has finished visiting all of A’s descendants. So 
there is a cycle.



6.5. Cycle Detection contd…

• In order to detect cycles, we use a 
modified depth first search called a 
colored DFS. All nodes are initially marked 
white. When a node is encountered, it is 
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white. When a node is encountered, it is 
marked grey, and when its descendants 
are completely visited, it is marked black. 
If a grey node is ever encountered, then 
there is a cycle.



Cycle detection algorithm.

boolean containsCycle(Graph g):
for each vertex v in g do:
v.mark = WHITE;
od;
for each vertex v in g do:
if v.mark == WHITE then:
if visit(g, v) then:
return TRUE;
fi;
fi;
od;
return FALSE;
boolean visit(Graph g, Vertex v):

© 2008, University of Colombo School of Computing 44

boolean visit(Graph g, Vertex v):
v.mark = GREY;
for each edge (v, u) in g do:
if u.mark == GREY then:
return TRUE;
else if u.mark == WHITE then:
if visit(g, u) then:
return TRUE;
fi;
fi;
od;
v.mark = BLACK;
return FALSE;



6.6. Spanning Tree

A spanning tree of a graph is a subgraph 

that is a tree containing all the vertices.
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6.6.1. Minimum Spanning Tree 

(MST)

The spanning tree among all spanning 

trees with the lowest total edge weight.
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6.6.2. Applications of MST 

Problem

• Computer networks

- How to connect a set of computers 
using   the minimum amount of wire.
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• Electronic circuits



6.6.3. Minimum Spanning Tree 

(MST)

Find the MST.
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6.6.3.Solution
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6.6.4. Generic Algorithm for MST
Input : connected weighted graph, G

Output : MST, T, for graph G

Greedy strategy in the generic algorithm

- Grow the MST one edge at a time.

- Manage a set of edges A, that is prior to each 
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- Manage a set of edges A, that is prior to each 
iteration, A is a subset of some MST

• At each step determine an edge (u,v) that can be 
added to A without violating this invariant. 

• We call such an edge a safe edge for A, since it 
can be safely added to A while maintaining the 
invariant.



6.6.4. Generic Algorithm for MST

Generic-MST(G,w)

1. A � 0

2. while A does not form a spanning tree
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2. while A does not form a spanning tree

3. do find an edge (u,v) that is safe for 
A

4. A � A U { (u,v)}

5. return A



• An Undirected Graph is a graph where 
the edges have no directions.

• The edges in an undirected graph are 
called Undirected Edges.

Undirected Graph

6.7. Connectivity of graphs
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called Undirected Edges.

V1

V3

V2

V4

{vi,vj} = {vj, vi}



1

2

3

G = (V, E)

• Example (Undirected Graph)

6.7. Connectivity of graphs 

contd…
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2

4

5

V = {1, 2, 3, 4, 5}

E = {(1,2), (1,3), (1,4), (2,3), 

(3,5), (4,5)}



6.7. Connectivity of graphs 

contd…

• A Directed Graph or Digraph is a graph where 
each edge has a direction.

• The edges in a digraph are called Arcs or 
Directed Edges.

Directed Graphs
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Directed Edges.

{vi,vj} = {vj, vi}

V1

V3

V2

V4



• Example (Digraph)  

1

4

6

2

G = (V, E)

6.7. Connectivity of graphs 

contd…
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3 5

2
V = {1, 2, 3, 4, 5, 6}

E = {(1,4), (2,1), (2,3), (3,2), (4,3),   

(4,5), (4,6), (5,3), (6,1), (6,5)}

(1, 4) = 1→4  where 1 is the tail

and 4 is the head



6.8. Topological Sort

• Graphs are sometimes used to represent 
“before and after” relationships. 
For example, you need to think through a 
design for a program before you start 
coding. 
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coding. 

• These two steps can be represented as 
vertices, and the relationship between 
them as a directed edge from the first to 
the second.



6.8. Topological Sort contd…

• On such graphs, it is useful to determine 

which steps must come before others. The 

topological sort algorithm computes an 

ordering on a graph such that if vertex    is 

earlier than vertex  in the ordering, there is 

β
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earlier than vertex  in the ordering, there is 

no path from   to  . In other words, you 

cannot get from a vertex later in the ordering 

to a vertex

• earlier in the ordering. Of course, topological 

sort works only on directed acyclic graphs.

β α



6.8. Topological Sort contd…

• The simplest topological sort algorithm is 
to repeatedly remove vertices with in-
degree of 0 from the graph. The edges 
belonging to the vertex are also removed, 
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belonging to the vertex are also removed, 
reducing the in-degree of adjacent 
vertices. This is done until the graph is 
empty, or until no vertex without incoming 
edges exists, in which case the sort fails.



6.9. Networks

• Networks can be used to represent the 
transportation of some commodity through 
a system of delivery channels.

• There are sources (x) and sinks (y).
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• There are sources (x) and sinks (y).

• The network is a directed graph, where 
each arc a is associated with a capacity, 
c(a).



6.9. Networks contd…
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6.9.1. Flow

• A flow in a network is a set of numbers associated 

with each arc, f (a).

• This indicates how much of a channel’s capacity is 

being used.

• 0    f (a)     c(a).≤ ≤
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• 0    f (a)     c(a).

• For a vertex v, the flow into and out of the vertex is

• denoted by f−(v) and f+(v) respectively.

• For intermediate vertices (not sources or sinks) the 

flow in is the same as the flow out. This is called the 

conservation condition.

≤ ≤



6.9.2. Resultant flow

• For some set of vertices S, the resultant flow out of S is 
given by f+(S) − f−(S).

• We are often interested in the resultant flow out of the 
source x. (Or the set of sources X if there is more than 
one).

• In particular, we usually want to find a maximum flow, so 
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• In particular, we usually want to find a maximum flow, so 
that as much of the capacity is used as possible in 
transporting out of the sources to the sinks.

• It is straightforward to extend a network with multiple 
sources and sinks to one with just one source and sink in 
order to analyse the maximum flow.



6.9.3. Cuts

• A cut is a division of the vertices into two sets S and   , so 
that the source is in S and the sink is in    .

• The capacity of a cut is the sum of all the edges which 
cross between S and    .

• How many cuts are possible in a network with  vertices?

s
s

s
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• How many cuts are possible in a network with  vertices?

• What are the different cuts of the network on the board, 
and what are their capacities?



6.9.4. Max-flow min-cut

• In all the examples we have seen, the minimum 

capacity cut is the same as the maximum flow.

• Intuitively we can think of saturating the 

bottlenecks.
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bottlenecks.

• To prove, we can show first that max flow    min 

cut (no augmenting paths).

• Then show max flow     min cut (removing 

edges changes capacity).

≤

≥



6.9.5. The Ford-Fulkerson 

Algorithm

• An algorithm for finding the maximum flow in a 

network.

1. Set the flow to zero for all arcs.

2. Calcuate the residual network Gf . While there is a 

path p from x to y in G :
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path p from x to y in Gf :

• Find cf (p) = min{cf (u, v)|(u, v)      p} 

• For each edge in p, add cf (p) to the flow.

(Subtract cf (p) from the flow if the edge is a reverse arc in the 

network).

– Repeat step 2 until there is no augmenting path.

∈



6.9.5. The Ford-Fulkerson 

Algorithm contd…
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6.9.6. Other problems regarding 

network flow

• Multi commodity flow: a number of sources 
produce different products that are to be 
transported to different sinks using the 
same network.
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• Mimimum cost flow: each arc has an 
associated cost, and we want to find the 
cheapest mode of transportation.

• Circulation: there is a lower bound on the 
flow as well as an upper bound.


