
7. Sorting and Searching 

© 2008, University of Colombo School of Computing 1

7. Sorting and Searching 

Algorithms



7.1. Efficiency of Algorithms

• Worst case efficiency

is the maximum number of steps that an algorithm can take for any
collection of data values.  

• Best case efficiency

is the minimum number of steps that an algorithm can take any collection of 

© 2008, University of Colombo School of Computing 2

is the minimum number of steps that an algorithm can take any collection of 
data values.  

• Average case efficiency

- the  efficiency averaged on all possible inputs

- must assume a distribution of the input 

- we normally assume uniform distribution (all keys are equally   probable)

If the input has size n, efficiency will be a function of n



7.1. Efficiency of Algorithms 

contd…

• We are interested in analyzing the 
efficiency of an algorithm
– involves determining the quantity of computer 

resources consumed by the algorithm

© 2008, University of Colombo School of Computing 3

• These resources include 
– the amount of memory and 

– the amount of computational time

• The efficiency of a given algorithm is 
determined the resources required, as the 
size of the algorithm grows.



7.1.1. The Big-O Notation 

• We can say that a function is “of the order of n", 
which can be written as O(n) to describe the 
upper bound on the number of operations

• This is called Big-Oh notation

• Some common orders are:

© 2008, University of Colombo School of Computing 4

• Some common orders are:
– O( 1 ) constant (the size of n has no effect)

– O( log n ) logarithmic

– O( n log n ) 

– O( n2 )  quadratic

– O( n3 )  cubic

– O( 2n )  exponential



7.1.2. Formal Big-O Definition

• Given functions f(n) and g(n), we say that f(n) is 

O(g(n)) if there are positive constants

c and n
0

such that

f(n) ≤ cg(n)  for n ≥ n
0

10,000

3n

2n+10

© 2008, University of Colombo School of Computing 5

f(n) ≤ cg(n)  for n ≥ n
0

Example: 2n + 10 is O(n)

2n + 10 ≤ cn

(c − 2) n ≥ 10

n ≥ 10/(c − 2)

Pick c = 3 and n0 = 10

1

10

100

1,000

1 10 100 1,000

n

2n+10

n



7.1.3. Big-O and Growth Rate

• The big-Oh notation gives an upper bound 
on the growth rate of a function

• The statement “f(n) is O(g(n))” means that 
the growth rate of f(n) is no more than the 

© 2008, University of Colombo School of Computing 6

the growth rate of f(n) is no more than the 
growth rate of g(n)

• We can use the big-Oh notation to rank 
functions according to their growth rate



7.1.4. Big-O Rules

• If is f(n) a polynomial of degree d, then f(n)

is O(nd), i.e.,

1.Drop lower-order terms

2.Drop constant factors

© 2008, University of Colombo School of Computing 7

2.Drop constant factors

• Use the smallest possible class of 
functions

– Say “2n is O(n)” instead of “2n is O(n2)”

• Use the simplest expression of the class

– Say “3n + 5 is O(n)” instead of “3n + 5 is O(3n)”



7.1.5 Examples

• We say that n4 + 100n2 + 10n + 50 is of 
the order of n4 or O(n4)

• We say that 10n3 + 2n2 is O(n3)    

• We say that n3 - n2 is O(n3)

© 2008, University of Colombo School of Computing 8

• We say that n3 - n2 is O(n3)

• We say that 10 is O(1), 

• We say that 1273 is O(1)



7.1.6. Big-O Rules

• If is f(n) a polynomial of degree d, then f(n) is 

O(nd), i.e.,

1.Drop lower-order terms

2.Drop constant factors

© 2008, University of Colombo School of Computing 9

• Use the smallest possible class of functions

– Say “2n is O(n)” instead of “2n is O(n2)”

• Use the simplest expression of the class

– Say “3n + 5 is O(n)” instead of “3n + 5 is O(3n)”



7.1.7. Relatives of Big-O
• big-Omega

– f(n) is Ω(g(n)) if there is a constant c > 0 

and an integer constant n0 ≥ 1 such that 

f(n) ≥ c•g(n) for n ≥ n0

• big-Theta

– f(n) is Θ(g(n)) if there are constants c’ > 0 and c’’ > 0 and an 
integer constant n ≥ 1 such that c’•g(n) ≤ f(n) ≤ c’’•g(n) for n 

© 2008, University of Colombo School of Computing 10

integer constant n0 ≥ 1 such that c’•g(n) ≤ f(n) ≤ c’’•g(n) for n 
≥ n0

• little-oh

– f(n) is o(g(n)) if, for any constant c > 0, there is an integer 
constant n0 ≥ 0 such that f(n) ≤ c•g(n) for n ≥ n0

• little-omega

– f(n) is ω(g(n)) if, for any constant c > 0, there is an integer 
constant n0 ≥ 0 such that f(n) ≥ c•g(n) for n ≥ n0



7.1.8. Average vs. Worst Case

• Algorithm may run faster on some inputs 
than it does on the others

• Average case refers to the running time of 
an algorithm as an average taken over all 

© 2008, University of Colombo School of Computing 11

an algorithm as an average taken over all 
inputs of a same size

• Worst case refers to the running time of an 
algorithm as the maximum taken over all 
inputs of a same size



7.2. Searching Algorithms

• Searching algorithms are closely related to the concept of dictionaries. 

• Dictionaries are data structures that support search, insert, and delete 
operations. 

• One of the most effective representations is a hash table. Typically, a 
simple function is applied to the key to determine its place in the dictionary. 
Another efficient search algorithms on sorted tables is binary search. 

• If the dictionary is not sorted then heuristic methods of dynamic 
reorganization of the dictionary are of great value. One of the simplest are 

© 2008, University of Colombo School of Computing 12

reorganization of the dictionary are of great value. One of the simplest are 
cache-based methods: several recently used keys are stored a special data 
structure that permits fast search (for example is always sorted). For 
example keeping the last N recently found values at the top of the table (or 
list) dramatically improved performance. Other cache-based approach are 
also possible. In the simplest form the cache can be merged with the 
dictionary: 

– move-to-front method : A heuristic that moves the target of a search to the 
head of a list so it is found faster next time. 

– transposition method : Search an array or list by checking items one at a time. 
If the value is found, swap it with its predecessor so it is found faster next time. 



7.2.1. Binary search trees

• binary search tree (BST) is a binary tree data structure which has 
the following properties:
– each node (item in the tree) has a key value; 

– a total order (linear order) is defined on these key values; 

– the left subtree of a node contains only values less than the parent 
node's key value; 

– the right subtree of a node contains only values greater than or equal to 
the parent node's key value. 

© 2008, University of Colombo School of Computing 13

– the right subtree of a node contains only values greater than or equal to 
the parent node's key value. 

• The major advantage of binary search trees over the other data 
structures is that the related sorting algorithms and search 
algorithms such as in-order traversal can be very efficient.

• Binary search trees can choose to allow or disallow duplicate 
values, depending on the implementation.

• Binary search trees are a fundamental data structures used to 
construct more abstract data structures such as sets, multisets, and 
associative arrays. 



7.2.2. B-trees

• B-trees are multiway trees, commonly 
used in external storage, in which nodes 
correspond to blocks on the disk. As in 
other trees, the algorithms find their way 
down the tree, reading one block at each 

© 2008, University of Colombo School of Computing 14

down the tree, reading one block at each 
level. B-trees provide searching, insertion, 
and deletion of records in O(logN) time. 
This is quite fast and works even for very 
large files. However, the programming is 
not trivial.



7.2.3.1. Breadth-first search

• breadth-first search (BFS) is a graph 
search algorithm that begins at the root 
node and explores all the neighboring 
nodes. Then for each of those nearest 

© 2008, University of Colombo School of Computing 15

nodes. Then for each of those nearest 
nodes, it explores their unexplored 
neighbor nodes, and so on, until it finds 
the goal. 



7.2.3.1. Breadth-first search

• How it works
– BFS is an uninformed search method that aims to 

expand and examine all nodes of a graph 
systematically in search of a solution. In other words, 
it exhaustively searches the entire graph without 
considering the goal until it finds it. It does not use a 

© 2008, University of Colombo School of Computing 16

considering the goal until it finds it. It does not use a 
heuristic.

– From the standpoint of the algorithm, all child nodes 
obtained by expanding a node are added to a FIFO 
queue. In typical implementations, nodes that have 
not yet been examined for their neighbors are placed 
in some container (such as a queue or linked list) 
called "open" and then once examined are placed in 
the container "closed".



7.2.3.1. Breadth-first search

• How it works

© 2008, University of Colombo School of Computing 17



7.2.3.1. Breadth-first search

• Applications of BFS

– Breadth-first search can be used to solve many 

problems in graph theory, for example:

– Finding all connected components in a graph. 

– Finding all nodes within one connected component 

© 2008, University of Colombo School of Computing 18

– Finding all nodes within one connected component 

– Copying Collection, Cheney's algorithm 

– Finding the shortest path between two nodes u and v

(in an unweighted graph) 

– Testing a graph for bipartiteness 

– (Reverse) Cuthill–McKee mesh numbering 



7.2.3.2. Depth-first search

• Depth-first search (DFS) is an algorithm for traversing 
or searching a tree, tree structure, or graph. One starts 
at the root (selecting some node as the root in the graph 
case) and explores as far as possible along each branch 
before backtracking. 

• Formally, DFS is an uninformed search that progresses 

© 2008, University of Colombo School of Computing 19

• Formally, DFS is an uninformed search that progresses 
by expanding the first child node of the search tree that 
appears and thus going deeper and deeper until a goal 
node is found, or until it hits a node that has no children. 
Then the search backtracks, returning to the most recent 
node it hadn't finished exploring. In a non-recursive 
implementation, all freshly expanded nodes are added to 
a LIFO stack for exploration. 



7.2.3.2. Depth-first search

• How it works

© 2008, University of Colombo School of Computing 20



7.2.3.2. Depth-first search

• a depth-first search starting at A, assuming that the left edges in the shown graph are 
chosen before right edges, and assuming the search remembers previously-visited 
nodes and will not repeat them (since this is a small graph), will visit the nodes in the 
following order: A, B, D, F, E, C, G.

• Performing the same search without remembering previously visited nodes results in 
visiting nodes in the order A, B, D, F, E, A, B, D, F, E, etc. forever, caught in the A, B, 
D, F, E cycle and never reaching C or G.

• Iterative deepening prevents this loop and will reach the following nodes on the 
following depths, assuming it proceeds left-to-right as above:

© 2008, University of Colombo School of Computing 21

following depths, assuming it proceeds left-to-right as above:
– 0: A 
– 1: A (repeated), B, C, E 

• (Note that iterative deepening has now seen C, when a conventional depth-first 
search did not.)

– 2: A, B, D, F, C, G, E, F 

• (Note that it still sees C, but that it came later. Also note that it sees E via a different 
path, and loops back to F twice.)

– 3: A, B, D, F, E, C, G, E, F, B 

• For this graph, as more depth is added, the two cycles "ABFE" and "AEFB" will 
simply get longer before the algorithm gives up and tries another branch.



7.2.4. Java Implementations
Java implemetation – Depth-first search

class StackX

{

private final int SIZE = 20;

private int[] st;

private int top;

public StackX() // constructor

{

st = new int[SIZE]; // make array

top = -1;

}

© 2008, University of Colombo School of Computing 22

}

public void push(int j) // put item on stack

{ st[++top] = j; }

public int pop() // take item off stack

{ return st[top--]; }

public int peek() // peek at top of stack

{ return st[top]; }

public boolean isEmpty() // true if nothing on stack

{ return (top == -1); }

} // end class StackX

////////////////////////////////////////////////////////////////



7.2.4. Java Implementations

class Vertex
{
public char label; // label (e.g. 'A')
public boolean wasVisited;
// ------------------
public Vertex(char lab) // constructor

© 2008, University of Colombo School of Computing 23

{
label = lab;
wasVisited = false;
}
// ------------------
} // end class Vertex
////////////////////////////////////////////////////////////////



7.2.4. Java Implementations
class Graph

{

private final int MAX_VERTS = 20;

private Vertex vertexList[]; // list of vertices

private int adjMat[][]; // adjacency matrix

private int nVerts; // current number of vertices

private StackX theStack;

// ------------------

public Graph() // constructor

© 2008, University of Colombo School of Computing 24

public Graph() // constructor

{

vertexList = new Vertex[MAX_VERTS];

// adjacency matrix

adjMat = new int[MAX_VERTS][MAX_VERTS];

nVerts = 0;

for(int j=0; j<MAX_VERTS; j++) // set adjacency

for(int k=0; k<MAX_VERTS; k++) // matrix to 0

adjMat[j][k] = 0;

theStack = new StackX();

} // end constructor

// ------------------



7.2.4. Java Implementations

public void addVertex(char lab)
{
vertexList[nVerts++] = new Vertex(lab);
}
public void addEdge(int start, int end)

{

adjMat[start][end] = 1;

© 2008, University of Colombo School of Computing 25

adjMat[start][end] = 1;

adjMat[end][start] = 1;

}

// ------------------

public void displayVertex(int v)

{

System.out.print(vertexList[v].label);

}

// ------------------



7.2.4. Java Implementations
public void dfs() // depth-first search

{ // begin at vertex 0

vertexList[0].wasVisited = true; // mark it

displayVertex(0); // display it

theStack.push(0); // push it

while( !theStack.isEmpty() ) // until stack empty,

{

// get an unvisited vertex adjacent to stack top

int v = getAdjUnvisitedVertex( theStack.peek() );

if(v == -1) // if no such vertex,

theStack.pop();

© 2008, University of Colombo School of Computing 26

theStack.pop();

else // if it exists,

{

vertexList[v].wasVisited = true; // mark it

displayVertex(v); // display it

theStack.push(v); // push it

}

} // end while

// stack is empty, so we're done

for(int j=0; j<nVerts; j++) // reset flags

vertexList[j].wasVisited = false;

} // end dfs

// ------------------



7.2.4. Java Implementations

// returns an unvisited vertex adj to v

public int getAdjUnvisitedVertex(int v)

{

for(int j=0; j<nVerts; j++)

if(adjMat[v][j]==1 && vertexList[j].wasVisited==false)

return j;

return -1;

} // end getAdjUnvisitedVert()

© 2008, University of Colombo School of Computing 27

} // end getAdjUnvisitedVert()

// ------------------

} // end class Graph

////////////////////////////////////////////////////////////////



7.2.4. Java Implementations

class DFSApp

{

public static void main(String[] args)

{

Graph theGraph = new Graph();

theGraph.addVertex('A'); // 0 (start for dfs)

theGraph.addVertex('B'); // 1

theGraph.addVertex('C'); // 2

© 2008, University of Colombo School of Computing 28

theGraph.addVertex('C'); // 2

theGraph.addVertex('D'); // 3

theGraph.addVertex('E'); // 4

theGraph.addEdge(0, 1); // AB

theGraph.addEdge(1, 2); // BC

theGraph.addEdge(0, 3); // AD

theGraph.addEdge(3, 4); // DE

System.out.print("Visits: ");

theGraph.dfs(); // depth-first search

System.out.println();

} // end main()

} // end class DFSApp

////////////////////////////////////////////////////////////////



7.2.4. Java Implementations

• Breath-first search
class Queue

{

private final int SIZE = 20;

private int[] queArray;

private int front;

private int rear;

public Queue() // constructor

© 2008, University of Colombo School of Computing 29

public Queue() // constructor

{

queArray = new int[SIZE];

front = 0;

rear = -1;

}

public void insert(int j) // put item at rear of queue

{

if(rear == SIZE-1)

rear = -1;

queArray[++rear] = j;

}



7.2.4. Java Implementations

public int remove() // take item from front of queue
{
int temp = queArray[front++];
if(front == SIZE)
front = 0;
return temp;

© 2008, University of Colombo School of Computing 30

}
public boolean isEmpty() // true if queue is empty
{
return ( rear+1==front || (front+SIZE-1==rear) );
}
} // end class Queue
////////////////////////////////////////////////////////////////



7.2.4. Java Implementations

////////////////////////////////////////////////////////////////

class Vertex

{

public char label; // label (e.g. 'A')

public boolean wasVisited;

// ------------------------------------------------------------

-

© 2008, University of Colombo School of Computing 31

-

public Vertex(char lab) // constructor

{

label = lab;

wasVisited = false;

}

// ------------------------------------------------------------

-

} // end class Vertex

////////////////////////////////////////////////////////////////



7.2.4. Java Implementations
class Graph

{

private final int MAX_VERTS = 20;

private Vertex vertexList[]; // list of vertices

private int adjMat[][]; // adjacency matrix

private int nVerts; // current number of vertices

private Queue theQueue;

// ------------------

public Graph() // constructor

© 2008, University of Colombo School of Computing 32

public Graph() // constructor

{

vertexList = new Vertex[MAX_VERTS];

// adjacency matrix

adjMat = new int[MAX_VERTS][MAX_VERTS];

nVerts = 0;

for(int j=0; j<MAX_VERTS; j++) // set adjacency

for(int k=0; k<MAX_VERTS; k++) // matrix to 0

adjMat[j][k] = 0;

theQueue = new Queue();

} // end constructor

// ------------------------------------------------------------



7.2.4. Java Implementations

public void addVertex(char lab)

{

vertexList[nVerts++] = new Vertex(lab);

}

// ------------------------------------------------------------

-

public void addEdge(int start, int end)

{

© 2008, University of Colombo School of Computing 33

{

adjMat[start][end] = 1;

adjMat[end][start] = 1;

}

// ------------------------------------------------------------

-

public void displayVertex(int v)

{

System.out.print(vertexList[v].label);

}

// ------------------------------------------------------------



7.2.4. Java Implementations
public void bfs() // breadth-first search

{ // begin at vertex 0

vertexList[0].wasVisited = true; // mark it

displayVertex(0); // display it

theQueue.insert(0); // insert at tail

int v2;

while( !theQueue.isEmpty() ) // until queue empty,

{

int v1 = theQueue.remove(); // remove vertex at head

// until it has no unvisited neighbors

© 2008, University of Colombo School of Computing 34

// until it has no unvisited neighbors

while( (v2=getAdjUnvisitedVertex(v1)) != -1 )

{ // get one,

vertexList[v2].wasVisited = true; // mark it

displayVertex(v2); // display it

theQueue.insert(v2); // insert it

} // end while

} // end while(queue not empty)

// queue is empty, so we're done

for(int j=0; j<nVerts; j++) // reset flags

vertexList[j].wasVisited = false;

} // end bfs()

// ------------------------------------------------------------



7.2.4. Java Implementations

// returns an unvisited vertex adj to v

public int getAdjUnvisitedVertex(int v)

{

for(int j=0; j<nVerts; j++)

if(adjMat[v][j]==1 && vertexList[j].wasVisited==false)

return j;

© 2008, University of Colombo School of Computing 35

return j;

return -1;

} // end getAdjUnvisitedVert()

// ------------------------------------------------------------

-

} // end class Graph

////////////////////////////////////////////////////////////////



7.2.4. Java Implementations
class BFSApp

{

public static void main(String[] args)

{

Graph theGraph = new Graph();

theGraph.addVertex('A'); // 0 (start for dfs)

theGraph.addVertex('B'); // 1

theGraph.addVertex('C'); // 2

theGraph.addVertex('D'); // 3

© 2008, University of Colombo School of Computing 36

theGraph.addVertex('D'); // 3

theGraph.addVertex('E'); // 4

theGraph.addEdge(0, 1); // AB

theGraph.addEdge(1, 2); // BC

theGraph.addEdge(0, 3); // AD

theGraph.addEdge(3, 4); // DE

System.out.print("Visits: ");

theGraph.bfs(); // breadth-first search

System.out.println();

} // end main()

} // end class BFSApp



7.3. Sorting algorithms

• a sorting algorithm is an algorithm that puts elements 
of a list in a certain order. The most-used orders are 
numerical order and lexicographical order. Efficient 
sorting is important to optimizing the use of other 
algorithms (such as search and merge algorithms) that 
require sorted lists to work correctly; it is also often 

© 2008, University of Colombo School of Computing 37

require sorted lists to work correctly; it is also often 
useful for canonicalizing data and for producing human-
readable output. More formally, the output must satisfy 
two conditions:
– The output is in nondecreasing order (each element is no 

smaller than the previous element according to the desired total 
order); 

– The output is a permutation, or reordering, of the input. 



7.3.1. Insertion Sort

• Insertion Sort orders a list in the same way we would 

order a hand of playing cards. 

• Compare the first two numbers, placing the smallest one 

in the first position.

© 2008, University of Colombo School of Computing 38

in the first position.

• Compare the third number to the second number.  If the 

third number is larger, then the first three numbers are in 

order.  If not, then swap them.  Now compare the numbers 

in positions one and two and swap them if necessary.

• Proceed in this manner until reaching the end of the list.



7.3.1.1. Analyzing Insertion Sort

• Using Insertion Sort, the number of comparisons on a list 

of size n varies, because, if the numbers are already in 

order, further comparisons are avoided.  So we will find 

the average number of comparisons.

© 2008, University of Colombo School of Computing 39

• Using limits and probability, we find that the average 

number of comparisons is  (n-1)(n/4) + k, where k 

increases for larger values of n.



7.3.2. Selection Sort

• Scan the list and put the smallest number in the first 

position.

• Disregard the first position, which is now the smallest 

number, and put the second smallest number in the 

© 2008, University of Colombo School of Computing 40

number, and put the second smallest number in the 

second position.

• Proceed in this manner until reaching the end of the 

list.



7.3.2. Selection Sort

List Size Seconds 

1000 2.69 

• Note that as the list 

size doubles, the 

time increases 

about four-fold.

Sorting Times
(by Selection Sort on a 386 microprocessor running at 20 mHz).

© 2008, University of Colombo School of Computing 41

2000 11.78 

4000 47.51 

8000 190.70 

 

 

• A little arithmetic 

shows that the time 

to sort 128,000 

numbers would be 

over 12 hours!



7.3.2.1. Analyzing Selection Sort

• We will assume that the computer spends time only on 

comparisons and swaps.  However, since the average 

number of swaps is extremely difficult to compute, we will 

focus only on comparisons.

• On a list of size 4, we would compare the first position to 

© 2008, University of Colombo School of Computing 42

• On a list of size 4, we would compare the first position to 

the other 3 numbers, the second position to the 2 

remaining numbers, and the third position to the 1 

remaining number.  This is a total of 3+2+1 = 6 

comparisons.

• So, for a list of size n, there will be   n-1 + n-2 + … + 2 + 1 

comparisons.   In other words,  (n-1)(n/2) comparisons.



7.3.2.2. Selection Sort vs. 

Insertion Sort
(Time in Seconds on a 386 microprocessor running at 20 mHz).

• Insertion Sort is 

about twice as fast 

as Selection Sort.

120

140

160

180

200

© 2008, University of Colombo School of Computing 43

• But note that as the 

list size doubles, the 

time for both sorts 

increases about 

four-fold.
0

20

40

60

80

100

120

2000 4000 8000

Selection

Insertion



7.3.2.3. The Order of an 

Algorithm

• To compare two algorithms, we will take the limit of the 

number of comparisons of the first algorithm divided by 

the number of comparisons for the second algorithm as n 

(the number of items in the list) approaches infinity. 

© 2008, University of Colombo School of Computing 44

(the number of items in the list) approaches infinity. 

• When taking the limit of   (ln N) / N  or other similar cases,  

L’Hopital’s Rule becomes a handy tool.

• Two algorithms have the same ORDER if  the limit is 

greater than zero and less than infinity. Otherwise, they 

have different orders.



7.3.2.4. Order of Insertion & 

Selection Sorts

• Comparing Insertion Sort to Selection Sort, we take 

the limit of  [(n-1)(n/4) + k] /  [(n-1)(n/2)] as n 

approaches infinity.  As n grows larger, k does not 

grow fast enough to affect the limit, and so the limit = 

1/2.

© 2008, University of Colombo School of Computing 45

1/2.

• Since the fastest growing term in both Insertion & 

Selection Sort is n squared, we say they both have 

order n squared.

• Is there a sorting algorithm with a smaller (and thus 

faster) order?



7.3.3. Bubble sort

• Bubble sort is a straightforward and simplistic method of 
sorting data that is used in computer science education. 
The algorithm starts at the beginning of the data set. It 
compares the first two elements, and if the first is greater 
than the second, it swaps them. It continues doing this 
for each pair of adjacent elements to the end of the data 

© 2008, University of Colombo School of Computing 46

for each pair of adjacent elements to the end of the data 
set. It then starts again with the first two elements, 
repeating until no swaps have occurred on the last pass. 
While simple, this algorithm is highly inefficient and is 
rarely used except in education. A slightly better variant, 
cocktail sort, works by inverting the ordering criteria and 
the pass direction on alternating passes. Its average 
case and worst case are both O(n²). 



7.3.4. Shell sort

• Shell sort was invented by Donald Shell in 1959. It 
improves upon bubble sort and insertion sort by moving 
out of order elements more than one position at a time. 
One implementation can be described as arranging the 
data sequence in a two-dimensional array and then 
sorting the columns of the array using insertion sort. 

© 2008, University of Colombo School of Computing 47

sorting the columns of the array using insertion sort. 
Although this method is inefficient for large data sets, it is 
one of the fastest algorithms for sorting small numbers of 
elements (sets with less than 1000 or so elements). 
Another advantage of this algorithm is that it requires 
relatively small amounts of memory. 



7.3.5. Merge sort

• Merge sort takes advantage of the ease of 
merging already sorted lists into a new sorted 
list. It starts by comparing every two elements 
(i.e., 1 with 2, then 3 with 4...) and swapping 
them if the first should come after the second. It 
then merges each of the resulting lists of two 

© 2008, University of Colombo School of Computing 48

then merges each of the resulting lists of two 
into lists of four, then merges those lists of four, 
and so on; until at last two lists are merged into 
the final sorted list. Of the algorithms described 
here, this is the first that scales well to very large 
lists, because its worst-case running time is O(n
log n). 



7.3.6. Quicksort

• Choose an element out of the list as a pivot.  A good 

process to select a pivot is to compare the first, middle, 

and last elements and choose the middle value.

• Compare every other element in the list to the pivot and 

create two lists, one list where every element is smaller 

than the pivot and one where every element is larger.

© 2008, University of Colombo School of Computing 49

than the pivot and one where every element is larger.

• Now split each of these lists into smaller lists.  

• Continue in this way until the small lists have only one or 

two elements and we can sort them with at most one 

comparison each.



7.3.6.1. Selection, Insertion, & 

Quicksort
(Times in seconds on a 386 microprocessor running at 20 mHz).

List Size Selection Insertion Quicksort 

1000 2.69 1.73 0.11 

© 2008, University of Colombo School of Computing 50

2000 11.78 7.46 0.22 

3000 47.51 29.98 0.44 

4000 190.70 73.47 0.96 

 

 



71.3.7. Heap sort

• Heapsort is a much more efficient version of selection 
sort. It also works by determining the largest (or 
smallest) element of the list, placing that at the end (or 
beginning) of the list, then continuing with the rest of the 
list, but accomplishes this task efficiently by using a data 
structure called a heap, a special type of binary tree. 
Once the data list has been made into a heap, the root 

© 2008, University of Colombo School of Computing 51

Once the data list has been made into a heap, the root 
node is guaranteed to be the largest element. When it is 
removed and placed at the end of the list, the heap is 
rearranged so the largest element remaining moves to 
the root. Using the heap, finding the next largest element 
takes O(log n) time, instead of O(n) for a linear scan as 
in simple selection sort. This allows Heapsort to run in 
O(n log n) time. 



7.3.8. Radix sort

• Radix sort is an algorithm that sorts a list of 

fixed-size numbers of length k in O(n · k) time by 

treating them as bit strings. We first sort the list 

by the least significant bit while preserving their 

relative order using a stable sort. Then we sort 

© 2008, University of Colombo School of Computing 52

relative order using a stable sort. Then we sort 

them by the next bit, and so on from right to left, 

and the list will end up sorted. Most often, the 

counting sort algorithm is used to accomplish the 

bitwise sorting, since the number of values a bit 

can have is small. 



7.3.9. Java Implementation

• Bubble sort

void bubbleSort(int a[], int n)
/* Sorts in increasing order the array A of the size N */
{

int k;
int bound = n-1;
int t;
int last_swap;

© 2008, University of Colombo School of Computing 53

int last_swap;

while (bound) {
last_swap = 0;
for ( k=0; k<bound; k++ )

t = a[k]; /* t is a maximum of A[0]..A[k] */
if ( t > a[k+1] ) {

a[k] = a[k+1]; a[k+1] = t; /*swap*/
last_swap = k; /* mark the last swap position */

}//if
}//for
bound=last_swap; /*elements after bound already sorted */ 

}//while
} // bubbleSort 


