
4. Recursion

© 2008, University of Colombo School of Computing

4.1. Recursive Definitions

• There are many programming concepts
that define themselves.

• As it turns out, formal restrictions imposed
on definitions such as existence and

© 2008, University of Colombo School of Computing

on definitions such as existence and
uniqueness are satisfied and no violation
of the rules takes place. These definitions
are called recursive definitions.

• Recursive definitions are used primarily to
define infinite sets.

4.1. Recursive Definitions contd…

• When defining such as set, giving a complete list

of elements is impossible, and for large finite

sets, it is inefficient.

• A recursive definition consists of 2 parts :

© 2008, University of Colombo School of Computing

• A recursive definition consists of 2 parts :

– In the first part, called the anchor or ground case –

the basic elements that are building blocks of all other

elements of the set are listed.

– In the second part, rules are given that allow for the

construction of new objects out of basic elements or

objects that have already been constructed.

4.1. Recursive Definitions contd…

• These rules are applied again and again to

generate new objects.

• Example : To construct the set of natural

numbers, one basic element, 0, is singled out,

© 2008, University of Colombo School of Computing

numbers, one basic element, 0, is singled out,

and the operation of incrementing by 1 is given

as :

– 0 € N;

– if n € N, then (n+1) € N;

– there are no other objects in the set N.

N consists of the following items : 0,1,2,3,4,5,6,7,9

4.1. Recursive Definitions contd…

• Recursive Definitions serve two purposes:

– Generating new elements

– Testing whether an element belongs to a set.

• Recursive definitions are frequently used

© 2008, University of Colombo School of Computing

• Recursive definitions are frequently used
to define functions and sequence of
numbers.

4.2. Method calls and recursion

implementation

• What happens when a method is called? If
the method has formal parameters, they
have to be initialized to the values passed
as actual parameters.

© 2008, University of Colombo School of Computing

• In addition, the system has to know where
to resume execution of the program after
the method has finished.

• The method can be called by other
methods or by the main program (main ()).

4.2. Method calls and recursion

implementation contd…
• The information indicating where it has been called from

has to be remembered by the system.

• This could be done by storing the return address in main
memory in a place set aside for return addresses, but we
do not know in advance how much space might be
needed, and allocating too much space for that purpose

© 2008, University of Colombo School of Computing

needed, and allocating too much space for that purpose
alone is not efficient.

• For a method call, more information has to be stored
than just a return address. Therefore, dynamic allocation
using the run-time stack is a much better solution.

4.2. Method calls and recursion

implementation contd…
• What information should be preserved when a method is called?
• First, automatic (local) variables must be stored.
• If method f1(), which contains a declaration of an automatic variable

x, calls method f2(), which locally declares the variable x, the system
has to make a distinction between these two variables x.

• If f2 () uses a variable x, then its own x is meant; if f2 () assigns a
value to x, then x belonging to f1 () should be left unchanged.

© 2008, University of Colombo School of Computing

value to x, then x belonging to f1 () should be left unchanged.
• When f2 () is finished, f1 () can use the value assigned to its private

x before f2 () was called.
• This is especially important in the context of the present chapter,

when f1 () is the same as f2 (), when a method calls itself
recursively.

4.2. Method calls and recursion

implementation contd…
• The state of each method, including main (), is characterized by

– the contents of all automatic variables,

– the values of the method's parameters, and

– the return address indicating where to restart its caller.

• The data area containing all this information is called an activation
record or a stack frame and is allocated on the run-time stack.

• An activation record exists for as long as a method owning it is

© 2008, University of Colombo School of Computing

• An activation record exists for as long as a method owning it is
executing.

• This record is a private pool of information for the method, a
repository that stores all information necessary for its proper
execution and how to return to where it was called from.

• Activation records usually have a short lifespan because they are
dynamically allocated at method entry and deallocated upon exiting.

• Only the activation record of main () outlives every other activation
record.

4.2. Method calls and recursion

implementation contd…
• An activation record usually contains the following

information:
– Values for all parameters to the method, location of the first cell if

an array is passed or a variable is passed by reference, and
copies of all other data items.

– Local (automatic) variables that can be stored elsewhere, in
which case, the activation record contains only their descriptors

© 2008, University of Colombo School of Computing

which case, the activation record contains only their descriptors
and pointers to the locations where they are stored.

– The return address to resume control by the caller, the address
of the caller's instruction immediately following the call.

– A dynamic link, which is a pointer to the caller's activation record.
– The returned value for a method not declared as void. Because

the size of the activation record may vary from one call to
another, the returned value is placed right above the activation
record of the caller.

4.2. Method calls and recursion

implementation contd…
• If a method is called either by main () or by another

method, then its activation record is created on the run-
time stack.

• Creating an activation record whenever a method is
called allows the system to handle recursion properly.

• Recursion is calling a method that happens to have the

© 2008, University of Colombo School of Computing

• Recursion is calling a method that happens to have the
same name as the caller.

• Therefore, a recursive call is not literally a method calling
itself, but rather an instantiation of a method calling
another instantiation of the same original.

• These invocations are represented internally by different
activation records and are thus differentiated by the
system.

4.3. Anatomy of a Recursive Call

• The function that defines raising any number x to a

nonnegative integer power n is good example of a

recursive function.

• The most natural definition of this functions given by:

© 2008, University of Colombo School of Computing

Xn =

1 if n =0

x.xn-1 if n > 0

4.3. Anatomy of a Recursive Call

contd…

• A Java method for computing xn can be written
directly from the definition of a power:

double power (double x, int n) {

if (n == 0)

© 2008, University of Colombo School of Computing

if (n == 0)

return 1.0;

else

return x* power (x, n-1);

}

4.4. The implementation of

recursion

• Thee are several implementations of
recursions such as

– Tail recursion

– NonTail Recursion

© 2008, University of Colombo School of Computing

– NonTail Recursion

– Indirect recursion

– Nested Recursion

– Excessive recursion

4.4.1. Tail recursion

• All recursive definitions contain a reference to a

set or function being defined.

• There are, however, a variety of ways such a

reference can be implemented.

© 2008, University of Colombo School of Computing

reference can be implemented.

• This reference can be done in a straightforward

manner or in an intricate fashion, just once or

many times.

• There may be many possible levels of recursion

or different levels of complexity.

4.4.1. Tail recursion contd…

• Tail recursion is characterized by the use
of only one recursive call at the very end
of a method implementation.

• In other words, when the call is made,

© 2008, University of Colombo School of Computing

• In other words, when the call is made,
there are no statements left to be
executed by the method; the recursive call
is not only the last statement but there are
no earlier recursive calls, direct or indirect.

4.4.1. Tail recursion contd…

• Example : The method tail() defined as

void tail (int i) {

if (I > 0) {

System.out.print (I + “ ”);

© 2008, University of Colombo School of Computing

System.out.print (I + “ ”);

tail (i-1);

}

}

4.4.1. Tail recursion contd…

• Tail recursion is simply a glorified loop and
can be easily replaced by one.

• In this example, it is replaced by
substituting a loop for the if statement and

© 2008, University of Colombo School of Computing

substituting a loop for the if statement and
incrementing or decrementing the variable
i in accordance with the level of recursion.

• In this way, tail () can be expressed by an
iterative method:

4.4.1. Tail recursion contd…

void iterativeEquivalentOfTail (int i) {

for (; i > 0; i--)

System. out. print (i+ "");

}

© 2008, University of Colombo School of Computing

}

4.4.1. Tail recursion contd…

• Is there any advantage in using tail recursion

over iteration?

– For languages such as Java, there may be no

compelling advantage, but in a language such as

Prolog, which has no explicit loop construct (loops are

© 2008, University of Colombo School of Computing

Prolog, which has no explicit loop construct (loops are

simulated by recursion), tail recursion acquires a

much greater weight.

– In languages endowed with a loop or its equivalents,

such as an if statement combined with a goto

statement or labeled statement, tail recursion should

not be used.

4.4.2. NonTail Recursion

• Another problem that can be implemented in

recursion is printing an input line in reverse

order.

• Here is a simple recursive implementation:

© 2008, University of Colombo School of Computing

• Here is a simple recursive implementation:

void reverse() {

char ch = getChar();

if (ch != '\n') {

reverse() ;

System.out.print(ch);

}

}

4.4.3. Indirect recursion

• Direct recursion - where a method f () called itself.

• f () can call itself indirectly via a chain of other calls.
For example, f () can call g(), and g () can call f () . This
is the simplest case of indirect recursion.

• The chain of intermediate calls can be of an arbitrary
length, as in:

© 2008, University of Colombo School of Computing

length, as in:
f () � f1() � f2() � ………….. � fn() � f()

• There is also the situation when f () can call itself
indirectly through different chains.

• Thus, in addition to the chain just given, another chain
might also be possible. For instance
f() � g1 () � g2() � ………… � gm() � f()

4.4.3. Indirect recursion

• This situation can be exemplified by three methods used
for decoding information.
– receive () stores the incoming information in a buffer
– decode () converts it into legible form
– store () stores it in a file

• receive () fills the buffer and calls decode (), which in

© 2008, University of Colombo School of Computing

• receive () fills the buffer and calls decode (), which in
turn, after finishing its job, submits the buffer with
decoded information to store ().

• After store () accomplishes its tasks, it calls receive () to
intercept more encoded information using the same
buffer.

• Therefore, we have the chain of calls
receive() ���� decode() ���� store() ���� receive() ����

decode() ���� ………………

4.4.3. Indirect recursion contd…

• Above three methods work in the following
manner:

receive (buffer)

while buffer is not filled up

if information is still incoming

© 2008, University of Colombo School of Computing

if information is still incoming

get a character and store it in buffer;

else exit();

decode (buffer);

decode (buffer)

decode information in buffer;

store (buffer);

store (buffer)

transfer information from buffer to file;

receive (buffer);

4.4.3. Indirect recursion contd…

• As usual in the case of recursion, there has to

be an anchor in order to avoid falling into an

infinite loop of recursive calls.

© 2008, University of Colombo School of Computing

Nested Recursion

• A more complicated case of recursion is found in
definitions in which a function is not only defined in terms
of itself, but also is used as one of the parameters. The
following definition is an example of such a nesting:

0 if n = 0

© 2008, University of Colombo School of Computing

h(n) =

0 if n = 0

N if n > 4

h(2 +h(2n)) if n <= 4

4.4.4. Nested Recursion contd…

• Function h has a solution for all n >= 0.
This fact is obvious for all n > 4 and n = 0,

but it has to be proven for n = 1,2,3, and 4.
Thus, h(2) = h(2 + h(4)) = h(2 + h(2 +

© 2008, University of Colombo School of Computing

Thus, h(2) = h(2 + h(4)) = h(2 + h(2 +

h(8))) = 12. (What are the values of h(n)

for n = 1,3, and 4?)

4.4.4. Nested Recursion contd…

• Another example of nested recursion is a very important

function originally suggested by Wilhelm Ackermann in

1928 and later modified by Rozsa Peter:

m+1 if n = 0

© 2008, University of Colombo School of Computing

A(n,m) =

m+1 if n = 0

A(n-1,1) if n > 0, m = 0

A(n-1, A(n,m-1)) otherwise

8.4.4. Nested Recursion contd…

• Above function is interesting because of its remarkably rapid growth.

• It grows so fast that it is guaranteed not to have a representation by a
formula that uses arithmetic operations such as addition, multiplication, and
exponentiation.

• To illustrate the rate of growth of the Ackermann function, we need only
show that

A(3,m) = 2m+3 -3

© 2008, University of Colombo School of Computing

A(4,m) = 22:216
- 3

with a stack of m 2s in the exponent; A(4,l) = 2216
- 3 = 265536 - 3,

which exceeds even the number of atoms in the universe (which is
1080 according to current theories).

• The definition translates very nicely into Java, but the task of
expressing it in a nonrecursive form is truly troublesome.

4.4.4. Excessive recursion

• Logical simplicity and readability are used as an argument
supporting the use of recursion.

• The price for using recursion is slowing down execution time and
storing on the run-time stack more things than required in a
nonrecursive approach.

• If recursion is too deep (for example, computing 5.6100'000), then we
can run out of space on the stack and our program terminates

© 2008, University of Colombo School of Computing

can run out of space on the stack and our program terminates
abnormally by raising an unrecoverable StackOverflowError.

• But usually, the number of recursive calls is much smaller than
100,000, so the danger of overflowing the stack may not be
imminent. However, if some recursive function repeats the
computations for some parameters, the run time can be prohibitively
long even for very simple cases.

4.4.4. Excessive recursion contd…

• Consider Fibonacci numbers. A sequence of Fibonacci
numbers is defined as follows:

Fib(n) =
n if n = 0

Fib(n-2)+Fib(n-1) otherwise

© 2008, University of Colombo School of Computing

• The definition states that if the first two numbers are 0
and 1, then any number in the sequence is the sum of its
two predecessors. But these predecessors are in turn
sums of their predecessors, and so on, to the beginning
of the sequence. The sequence pro-duced by the
definition is

0,1,1,2,3, 5,8,13,21, 34, 55,89,...

4.4.4. Excessive recursion contd…

• How can this definition be implemented in Java?

It takes almost term-by-term translation to have

a recursive version, which is
int Fib (int n) {

if (n < 2)

© 2008, University of Colombo School of Computing

if (n < 2)

return n;

else return Fib(n-2) + Fib(n-l);

}

• The method is simple and easy to understand

but extremely inefficient fibonacci heap.

