
3. Linked Lists

© 2008, University of Colombo School of Computing 1

3. Introduction to Linked Lists

• An array is a very useful data structure provided in programming languages.

• It has at least two limitations:
– (1) changing the size of the array requires creating a new array and then copying

all data from the array with the old size to the array with the new size

– (2) The data in the array are next to each other sequentially in memory, which
means that inserting an item inside the array requires shifting some other data in
this array.

• These limitations can be overcome by using linked structures.

© 2008, University of Colombo School of Computing 2

• These limitations can be overcome by using linked structures.

• A linked structure is a collection of nodes storing data and links to other
nodes.

• In this way, nodes can be located anywhere in memory, and passing from
one node of the linked structure to another is accomplished by storing the
reference(s) to other node(s) in the structure.

• Although linked structures can be implemented in a variety of ways, the
most flexible implementation is by using a separate object for each node.

3.1. Singly linked
lists

• If a node contains a data field that is a reference to
another node, then many nodes can be used together
using only one variable to access the entire sequence of
nodes.

• Such a sequence of nodes is the most frequently used
implementation of a linked list, which is a data structure
composed of nodes, each node holding some

© 2008, University of Colombo School of Computing 3

implementation of a linked list, which is a data structure
composed of nodes, each node holding some
information and a reference to another node in the list.

• If a node has a link only to its successor in this
sequence, the list is called a singly linked list.

• Note that only one variable p is used to access any node
in the list.

• The last node on the list can be recognized by the null
reference field.

3.2. Doubly Linked Lists

• Each node has a reference or pointer back
to the previous nodes

© 2008, University of Colombo School of Computing 4

3.2. Doubly Linked Lists

• If we wish to traverse a list both forwards and backwards efficiently,
or if we wish, given a list element, to determine the preceding and
following elements quickly, then the doubly-linked list comes in
handy. A list element contains the data plus pointers to the next and

previous list items as shown in the picture below.

© 2008, University of Colombo School of Computing 5

3.2. Doubly Linked List contd…

Example:

The full example can be found in the directory:

/home/331/tamj/examples/lists/doublyLinked

class ListManager

{

private Node head;

© 2008, University of Colombo School of Computing 6

private Node head;

private int length;

private int currentDataValue = 10;

private static final int MAX_DATA = 100;

: : : :
}

3.2. More about Doubly Linked List

• A doubly linked list provides a natural
implementation of the List ADT

• Nodes implement Position and store:

– element

© 2008, University of Colombo School of Computing 7

– element

– link to the previous node

– link to the next node

• Special trailer and header nodes

3.2. More about Doubly Linked List

contd….

© 2008, University of Colombo School of Computing 8

3.2.1. Adding a new node at the end of a
doubly linked list

• To add a node to a list, the node has to be created, its fields
properly initialized, and then the node needs to be incorporated
into the list.

• The process of Inserting a node at the end of a doubly linked list is
performed in six steps:

1. A new node is created, and then its three fields are initialize as
exaples info,el and prev.

© 2008, University of Colombo School of Computing 9

2. the info field to the number el being inserted

3. the next field to null

4. and the prev field to the value of tail so that this field points to the last
node in the list. But now, the new node should become the last node;
therefore,

5. tail is set to reference the new node. But the new node is not yet
accessible from its predecessor; to rectify this,

6. the next field of the predecessor is set to reference the new node.

3.2.1. Adding a new node at the end of a
doubly linked list

• A special case concerns the last step. It is assumed in
this step that the newly created node has a predecessor,
so it accesses its prev field.

• It should be obvious that for an empty linked list, the new
node is the only node in the list and it has no
predecessor.

© 2008, University of Colombo School of Computing 10

predecessor.

• In this case, both head and tail refer to this node, and the
sixth step is now setting head to refer to this node.

• Note that step four—setting the prev field to the value of
tail—is executed properly because for an initially empty
list, tail is null. Thus, null becomes the value of the prev
field of the new node.

3.2.1. Doubly Linked List: Adding To The
End

public void addToEnd ()

{

Node anotherNode = new Node (currentDataValue);

Node temp;

if (isEmpty() == true)

head = anotherNode;

else {

temp = head;

© 2008, University of Colombo School of Computing 11

temp = head;

while (temp.next != null){

temp = temp.next;

}

temp.next = anotherNode;

anotherNode.previous = temp;

}

currentDataValue += 10;

length++;

}

3.2.2. Doubly Linked List: Adding
Anywhere(1)

public void addToPosition (int position)

{

Node anotherNode = new Node (currentDataValue);

Node temp;

Node prior;

Node after;

int index;

© 2008, University of Colombo School of Computing 12

if ((position < 1) || (position > (length+1)))

{

System.out.println("Position must be a value between 1-" +

(length+1));

}

3.2.2. Doubly Linked List: Adding
Anywhere(2)

else

{

// List is empty

if (head == null)

{

if (position == 1)

{

currentDataValue += 10;

© 2008, University of Colombo School of Computing 13

currentDataValue += 10;

length++;

head = anotherNode;

}

else

System.out.println("List empty, unable to add node to " +"position " +

position);

}

3.2.2. Doubly Linked List: Adding
Anywhere(3)

// List is not empty, inserting into first position.

else if (position == 1)

{

head.previous = anotherNode;

anotherNode.next = head;

head = anotherNode;

currentDataValue += 10;

© 2008, University of Colombo School of Computing 14

currentDataValue += 10;

length++;

}

3.2.2. Doubly Linked List: Adding
Anywhere (4)

// List is not empty inserting into a position other than the first

else

{

prior = head;

index = 1;

// Traverse list until current is referring to the node in front

// of the position that we wish to insert the new node into.

while (index < (position-1))

© 2008, University of Colombo School of Computing 15

while (index < (position-1))

{

prior = prior.next;

index++;

}

after = prior.next;

3.2.2. Doubly Linked List: Adding
Anywhere (5)

// Set the references to the node before the node to be

// inserted.

prior.next = anotherNode;

anotherNode.previous = prior;

// Set the references to the node after the node to be

// inserted.

© 2008, University of Colombo School of Computing 16

// inserted.

if (after != null)

after.previous = anotherNode;

anotherNode.next = after;

currentDataValue += 10;

length++;

}

}

}

3.2.3. Deleting the last node from

the doubly linked list
• Deleting the last node from the doubly linked list is straightforward

because there is direct access from the last node to its predecessor,
and no loop is needed to remove the last node.

• When deleting a node from the list, the temporary variable el is set
to the value in the last node, then tail is set to its predecessor, and
the last node is cut off from the list by setting the next field of the
next to last node to null.

© 2008, University of Colombo School of Computing 17

• In this way, the next to last node becomes the last node, and the
formerly last node is abandoned.

• Although this node accesses the list, the node is inaccessible from
the list; hence, it will be claimed by the garbage collector.

• The last step is returning the value stored in the removed node.

3.2.3. Deleting the last node from

the doubly linked list

• An attempt to delete a node from an empty list

may result in a program crash.

• Therefore, the user has to check whether the list

is not empty before attempting to delete the last

© 2008, University of Colombo School of Computing 18

is not empty before attempting to delete the last

node.

• As with the singly linked list's deleteFromHead(),

the caller should have an if statement

if (!list.isEmpty())

n = list.deleteFromTail();

else do not remove;

3.2.3. Deleting the last node from

the doubly linked list
• The second special case is the deletion of the only node

from a single-node linked list. In this case, both head and
tail are set to null.

• Because of the immediate accessibility of the last node,
both addToTail () and deleteFromTail () execute in
constant time O(l).

© 2008, University of Colombo School of Computing 19

constant time O(l).

• Methods for operating at the beginning of the doubly
linked list are easily obtained from the two methods
discussed by changing head to tail and vice versa,
changing next to prev and vice versa, and exchanging
the order of parameters when executing new.

3.2.3. Doubly Linked List: Deleting A
Node(1)

public void delete (int key)

{

int indexToDelete;

int indexTemp;

Node previous;

Node toBeDeleted;

Node after;

© 2008, University of Colombo School of Computing 20

Node after;

indexToDelete = search(key);

// No match, nothing to delete.

if (indexToDelete == -1)

{

System.out.println("Cannot delete element with a

data value of "

+ key + " because it was not found.");

}

3.2.3. Doubly Linked List: Deleting A
Node(2)

else
{

// Deleting first element.
if (indexToDelete == 1)
{

head = head.next;
length--;

}
else
{

previous = null;
toBeDeleted = head;
indexTemp = 1;

© 2008, University of Colombo School of Computing 21

indexTemp = 1;
while (indexTemp < indexToDelete)
{

previous = toBeDeleted;
toBeDeleted = toBeDeleted.next;
indexTemp++;
}
previous.next = toBeDeleted.next;
after = toBeDeleted.next;
after.previous = previous;
length--;
: : :

3.2.4. Pros Of Doubly Linked
Lists

• Pros

– Traversing the list in reverse order is now

possible.

– One can traverse a list without a trailing

© 2008, University of Colombo School of Computing 22

– One can traverse a list without a trailing

reference (or by scanning ahead)

– It is more efficient for lists that require

frequent additions and deletions near the front

and back

3.2.5. Cons Of Doubly Linked
Lists

• Cons

– An extra reference is needed

– Additions and deletions are more complex

(especially near the front and end of the list)

© 2008, University of Colombo School of Computing 23

(especially near the front and end of the list)

3.2.6. An implementation of a doubly linked
list

/***************************IntDLLNode.java********************************/

public class IntDLLNode {

public int info;

public IntDLLNode next, prev;

public IntDLLNode (int el) {

this (el,null,null);

© 2008, University of Colombo School of Computing 24

}

public IntDLLNode (int el, IntDLLNode n, IntDLLNode p) {

info = el; next =n; prev=p;

}

}

3.2.6. An implementation of a doubly linked list(2)

/***************************IntDLList.java********************************/

public class IntDLList {

private IntDLLNode head, tail;

public IntDLList () {

head = tail = null; }

public boolean isEmpty() {

return head == null; }

public void addToTail (int el) {

if (!isEmpty ()) {

tail = new IntDLLNode (el, null, tail);

tail.prev.next = tail; }

else head = tail = new IntDLLNode(el);

© 2008, University of Colombo School of Computing 25

else head = tail = new IntDLLNode(el);

}

public int removeFromTail () {

int el = tail.info;

if (head == tail) // if only one node in the list;

head = tail =null;

else { // if more than one node in the list;

tail = tail.prev;

tail.next = null; }

return el;

}

………………………. }

3.3. Circular Lists

© 2008, University of Colombo School of Computing 26

A circular list. The large yellow object represents the circular list as such. The

circular green nodes represent the elements of the list. The rectangular nodes

are instances of a class similar to LinkedListNode, which connect the

constituents of the list together.

3.3. Circular Lists

• A circular list is needed in which nodes form a ring: The
list is finite and each node has a successor.

• An example of such a situation is when several
processes are using the same resource for the same
amount of time, and we have to assure that each
process has a fair share of the resource.

© 2008, University of Colombo School of Computing 27

process has a fair share of the resource.

• Therefore, all processes—let their numbers be 6, 5, 8,
and 10, are put on a circular list accessible through
current.

• After one node in the list is accessed and the process
number is retrieved from the node to activate this
process, current moves to the next node so that the next
process can be activated the next time.

3.3. Circular Lists

• In an implementation of a circular singly
linked list, we can use only one permanent
reference, tail, to the list even though
operations on the list require access to the

© 2008, University of Colombo School of Computing 28

operations on the list require access to the
tail and its successor, the head.

• To that end, a linear singly linked list uses
two permanent references, head and tail.

3.3. Circular Linked Lists

• An extra link from the end of the list to the
front forms the list into a ring

© 2008, University of Colombo School of Computing 29

3.3.1. Uses Of A Circular List

• e.g., Memory management by operating
systems

© 2008, University of Colombo School of Computing 30

3.3.2. Searches With A Circular
Linked Lists

• Cannot use a null reference as the signal
that the end of the list has been reached.

• Must use the list reference as a point
reference (stopping point) instead

© 2008, University of Colombo School of Computing 31

reference (stopping point) instead

3.3.3. Traversing A Circular
Linked List

• Cannot use a null reference as the signal
that the end of the list has been reached.

• Must use the list reference as a point
reference (stopping point) instead

© 2008, University of Colombo School of Computing 32

reference (stopping point) instead

3.3.4. An Example Of Traversing
A Circular Linked List

public void display ()

{

Node temp = list;

System.out.println("Displaying list");

if (isEmpty() == true)

{

System.out.println("Nothing to display, list is empty.");

© 2008, University of Colombo School of Computing 33

System.out.println("Nothing to display, list is empty.");

}

do

{

System.out.println(temp.data);

temp = temp.next;

} while (temp != list);

System.out.println();

}

3.3.5. Worse Case Times For
Circular Linked Lists

© 2008, University of Colombo School of Computing 34

3.4. Skip Lists

• Linked lists have some serious drawbacks:
– They require sequential scanning to locate a searched-for

element.

– The search starts from the beginning of the list and stops when
either a searched-for element is found or the end of the list is
reached without finding this element.

© 2008, University of Colombo School of Computing 35

reached without finding this element.

– Ordering elements on the list can speed up searching, but a
sequential search is still required. Therefore, we may think about
lists that allow for skipping certain nodes to avoid sequential
processing.

– A skip list is an interesting variant of the ordered linked list that
makes such a nonsequential search possible (Pugh 1990).

3.4. Skip Lists contd…

• In a skip list of n nodes, for each k and i such that 1 <= k
<= [log n] and 1 <= i <= [n/2k-1] - 1, the node in position 2k-1

• i points to the node in position 2k-1 • (i + 1).

• This means that every second node points to the node two
positions ahead, every fourth node points to the node four
positions ahead, and so on.

© 2008, University of Colombo School of Computing 36

positions ahead, and so on.

• This is accomplished by having different numbers of
reference fields in nodes on the list:
– Half of the nodes have just one reference field
– one-fourth of the nodes have two reference fields
– one-eighth of the nodes have three reference fields and etc.

• The number of reference fields indicates the level of each
node, and the number of levels is maxLevel = [lg n] + 1.

3.5. Self-organizing lists

• The introduction of skip lists was motivated by the need to speed up the
searching process.

• Although singly and doubly linked lists require sequential search to locate
an element or to see that it is not in the list, we can improve the efficiency of
the search by dynamically organizing the list in a certain manner.

• This organization depends on the configuration of data; thus, the stream of
data requires reorganizing the nodes already on the list.

• There are many different ways to organize the lists, and this section

© 2008, University of Colombo School of Computing 37

• There are many different ways to organize the lists, and this section
describes four of them:

– Move-to-front method. After the desired element is located, put it at the
beginning of the list.

– Transpose method. After the desired element is located, swap it with its
predecessor unless it is at the head of the list.

– Count method. Order the list by the number of times elements are being
accessed.

– Ordering method. Order the list using certain criteria natural for the information
under scrutiny.

3.5. Self-organizing lists contd…

• In the first three methods, new information
is stored in a node added to the end of the
list;

• In the fourth method, new information is

© 2008, University of Colombo School of Computing 38

• In the fourth method, new information is
stored in a node inserted somewhere in
the list to maintain the order of the list.

3.5. Self-organizing lists contd…

• With the first three methods, we try to locate the elements most likely to be
looked for near the beginning of the list, most explicitly with the move-to-
front method and most cautiously with the transpose method.

• The ordering method already uses some properties inherent to the
information stored in the list.
For example, if we are storing nodes pertaining to people, then the list can
be organized alphabetically by the name of the person or the city or in
ascending or descending order using, say, birthday or salary.

© 2008, University of Colombo School of Computing 39

ascending or descending order using, say, birthday or salary.

• This is particularly advantageous when searching for information that is not
in the list, because the search can terminate without scanning the entire list.

• Searching all the nodes of the list, however, is necessary in such cases
using the other three methods.

• The count method can be subsumed in the category of the ordering
methods if frequency is part of the information.

• In many cases, however, the count itself is an additional piece of
information required solely to maintain the list; hence, it may not be
considered "natural" to the information at hand.

3.5. Self-organizing lists contd…

• Analyses of the efficiency of these methods
customarily compare their efficiency to that of
optimal static ordering.

• With this ordering, all the data are already
ordered by the frequency of their occurrence in

© 2008, University of Colombo School of Computing 40

ordered by the frequency of their occurrence in
the body of data so that the list is used only for
searching, not for inserting new items.

• Therefore, this approach requires two passes
through the body of data,
– one to build the list

– another to use the list for search alone.

