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5. Trees

Part -2



5.6. Balancing a tree

• BSTs where introduced because in theory 
they give nice fast search time.

• We have seen that depending on how the 
data arrives the tree can degrade into a 
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data arrives the tree can degrade into a 
linked list

• So what is a good programmer to do.

• Of course, they are to balance the tree



5.6. Balancing a tree -ideas

• One idea would be to get all of the data 
first, and store it in an array

• Then sort the array and then insert it in a 
tree
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tree

• Of course this does have some drawbacks 
so we need another idea



5.6.1. DSW Trees

• Named for Colin Day and then for Quentin F. 

Stout and Bette L. Warren, hence DSW.

• The main idea is a rotation

• rotateRight( Gr, Par, Ch )
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• rotateRight( Gr, Par, Ch )

– If Par is not the root of the tree

• Grandparent Gr of child Ch, becomes Ch’s parent by 
replacing Par;

– Right subtree of Ch becomes left subtree of Ch’s 

parent Par;

– Node Ch aquires Par as its right child



Maybe a picture will help
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5.6.1.1. More of the DSW

• So the idea is to take a tree and perform 
some rotations to it to make it balanced.

• First you create a backbone or a vine

• Then you transform the backbone into a 
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• Then you transform the backbone into a 
nicely balanced tree



5.6.1.2. Algorithms

• createBackbone(root, 

n )

– Tmp = root

– While ( Tmp != 0 )

• createPerfectTree(n)

– M = 2floor[lg(n+1)]-1;

– Make n-M rotations 

starting from the top of 

the backbone;
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• If Tmp has a left child

– Rotate this child 

about Tmp

– Set Tmp to the child 

which just became 

parent

• Else set Tmp to its right 
child

the backbone;

– While ( M > 1 )

• M = M/2;

• Make M rotations 
starting from the top of 
the backbone;



Maybe some more pictures
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5.6.1.3. Wrap-up

• The DSW algorithm is good if you can take 
the time to get all the nodes and then 
create the tree

• What if you want to balance the tree as 
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• What if you want to balance the tree as 
you go?

• You use an AVL Tree



5.6.2. AVL Trees

• Named after its inventors Adel’son-Vel’skii 
and Landis, hence AVL

• The heights of any subtree can only differ 
by at most one.
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by at most one.

• Each nodes will indicate balance factors.

• Worst case for an AVL tree is 44% worst 
then a perfect tree.

• In practice, it is closer to a perfect tree.



5.6.2.1. What does an AVL do?

• Each time the tree structure is changed, 
the balance factors are checked and if an 
imbalance is recognized, then the tree is 
restructured.
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restructured.

• For insertion there are four cases to be 
concerned with.

• Deletion is a little trickier.



5.6.2.2. AVL Insertion

• Case 1: Insertion into a right subtree of a 
right child.

– Requires a left rotation about the child

• Case 2: Insertion into a left subtree of a 
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• Case 2: Insertion into a left subtree of a 
right child.

– Requires two rotations

• First a right rotation about the root of the subtree

• Second a left rotation about the subtree’s parent



Some more pictures
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5.6.2.3. Deletion

• Deletion is a bit trickier.

• With insertion after the rotation we were 
done.

• Not so with deletion.
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• Not so with deletion.

• We need to continue checking balance 
factors as we travel up the tree



5.6.2.4. Deletion Specifics

• Go ahead and delete the node just like in 
a BST.

• There are 4 cases after the deletion:
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Cases

• Case 1: Deletion from a left subtree from a 
tree with a right high root and a right high 
right subtree.

– Requires one left rotation about the root
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– Requires one left rotation about the root

• Case 2: Deletion from a left subtree from a 
tree with a right high root and a balanced 
right subtree.

– Requires one left rotation about the root



Cases continued

• Case 3: Deletion from a left subtree from a tree 

with a right high root and a left high right subtree 

with a left high left subtree.

– Requires a right rotation around the right subtree root 

and then a left rotation about the root
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and then a left rotation about the root

• Case 4: Deletion from a left subtree from a tree 

with a right high root and a left high right subtree 

with a right high left subtree

– Requires a right rotation around the right subtree root 

and then a left rotation about the root



Definitely some pictures
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5.7. Self-adjusting Trees

• The previous sections discussed ways to 
balance the tree after the tree was 
changed due to an insert or a delete.

• There is another option.
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• There is another option.

• You can alter the structure of the tree after 
you access an element

– Think of this as a self-organizing tree



5.8. Heaps

• A heap is a binary tree storing keys at its internal 

nodes and satisfying the following properties:

– Heap-Order: for every internal node v other than the 

root, 

key(v) ≥ key(parent(v))
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key(v) ≥ key(parent(v))

– Complete Binary Tree: let h be the height of the 

heap

• for i = 0, … , h − 1, there are 2i nodes of depth I

• at depth h − 1, the internal nodes are to the left of the 
external nodes



5.8. Heaps contd…

–The last node of a heap is the rightmost internal node of depth h − 1
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5.8.1. Height of a Heap

• Theorem: A heap storing n keys has 
height O(log n)

• Proof: (we apply the complete binary tree 
property)
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property)
– Let h be the height of a heap storing n keys

– Since there are 2i keys at depth i = 0, … , h − 
2 and at least one key at depth h − 1, we 
have n ≥ 1 + 2 + 4 +… + 2h−2 + 1

– Thus, n ≥ 2h−1 , i.e., h ≤ log n + 1



5.8.1. Height of a Heap contd…
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5.8.2. Heaps and Priority Queues

• We can use a heap to implement a priority queue

• We store a (key, element) item at each internal node

• We keep track of the position of the last node

• For simplicity, we show only the keys in the pictures
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5.8.3. Insertion into a

Heap
• Method insertItem of the priority queue ADT corresponds 

to the insertion of a key k to the heap
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• The insertion algorithm consists of three steps
– Find the insertion node z 

(the new last node)

– Store k at z and expand z 
into an internal node

– Restore the heap-order property 



5.8.4. Removal from a Heap

• Method removeMin of the priority
queue ADT corresponds to the
removal of the root key from the
heap

• The removal algorithm consists of
three steps
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three steps

– Replace the root key with the
key of the last node w

– Compress w and its children
into a leaf

– Restore the heap-order
property


